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Abstract
Purpose The visual patterns in recurrence plots of time-series data can be quantified using recurrence quantification analy-
sis (RQA), a phase-space-based method. The ability to quantitate recurrence plots affords the possibility of using them to 
solve central biomedical problems, for example detecting the presence of neurological diseases. Our goal was to assess this 
application by statistically comparing the values of plot-based quantifiers of electroencephalograms (EEGs) from patients 
having multiple sclerosis (MS) with values from the EEGs of control subjects.
Methods First, employing a model system consisting of the addition of known deterministic signals to the EEG of normal 
subjects, we empirically identified the embedding conditions that facilitated detection of the effect of the addition of the 
signals. Second, we used the conditions thus identified to compare EEGs from 10 patients with MS and 10 age- and gender-
matched control subjects, using seven standard recurrence-plot quantifiers.
Results We identify embedding dimension of 5 points and time delay of 5 points as conditions that maximize the ability of 
RQA to detect the presence of deterministic activity in EEGs time series sampled at 500 Hz. The values of the RQA quanti-
fiers computed from the EEGs of the MS patients were significantly greater than the corresponding values from the controls, 
indicating that the presence of the disease was associated with detectable changes in the EEG (family-wise error < 0.05%).
Conclusions Recurrence plots detected the occurrence of alterations in EEGs associated with the presence of MS, indicating 
a decreased complexity (increased order) of brain electrical activity associated with brain disease.

Keywords Recurrence plot · Nonlinear modeling · Electroencephalogram · Multiple sclerosis

1 Introduction

Brain electrical activity is a time-dependent voltage meas-
ured on the scalp—the electroencephalogram (EEG)—con-
sisting of an instantaneous sum of electronically propagat-
ing contributions from numerous neuronal networks, each 
of which exhibits intra- and inter-network nonlinear interac-
tions. Time averaging and spectral analysis are commonly 
used to obtain physiological or diagnostic information from 

the electroencephalogram. The range of applicability of 
both methods is limited by their implicit assumption that the 
EEG is produced by linear processes in the brain. Analysis 
techniques recently developed to study nonlinear physical 
systems may be useful for obtaining information from the 
EEG not previously available [1]. One promising approach 
involves the evaluation of recurrence plots computed from 
mathematically transformed EEGs [2, 3].

Recurrence is a fundamental property of law-governed sys-
tems that change with time. Recurrent behavior of complex 
systems like the brain is typically unrecognizable by direct 
inspection of the time course of the signal, which appears to be 
random. But when such signals are embedded mathematically 
in a hyperdimensional phase space, the presence of law-gov-
erned activity can be visualized in two dimensions by means 
of a recurrence plot [4]. To facilitate quantitative analysis of 
the plots, Webber and Zbilut defined plot quantifiers based 
on the number and geometry of the points they contained [5], 
and took the important step of recognizing that their novel 
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procedure, called recurrence quantification analysis (RQA), 
could be applied to time series derived from biological systems 
[6], which are invariably energetically open and nonstationary. 
They used their method to make various inferences regarding 
lung and muscle physiology [7]. Others used RQA to describe 
postural control [8], help diagnose heart disease [9] and cogni-
tive impairment [10], characterize sleep apnea [11–13], predict 
the onset of an epileptic seizure [14], and rationalize inferences 
regarding sensory transduction of somatic stimuli [15–17].

Here we were interested in the use of RQA of EEG sig-
nals as the basis of a diagnostic test for the presence of neu-
rological diseases. Our hypothesis is that some of the neural 
networks are affected by the presence the disease, resulting 
in dynamical changes in the contribution they make to the 
signal recorded on the scalp. If recurrence quantifiers reli-
ably differed in the presence and absence of a particular 
disease, the presence of the disease could be inferred from 
the value of the quantifiers in relation to those of appropriate 
controls. Our goal was to assess this application by statisti-
cally comparing the values of RQA quantifiers of electro-
encephalograms (EEGs) from patients having multiple scle-
rosis (MS) with values from the EEGs of control subjects.

Multiple sclerosis is as an immune-mediated disease of 
the human central nervous system (CNS) that can affect any 
part of the brain and any cognitive function; signs and symp-
toms are unique to each patient and vary widely, depend-
ing on the amount of nerve damage and which nerves are 
affected. The most common MS diagnostic methods are 
magnetic resonance imaging, analysis of cerebrospinal fluid 
and measurement of evoked potentials, which are invasive 
and/or expensive [18]. EEG alone is not diagnostic, but non-
linear methods may be useful as a part of the clinician’s 
overall diagnosis [19].

Our first aim was to find RQA parameters that would 
facilitate detection of the general kind of determinism we 
suspected might be associated with the presence of neuro-
logical diseases; we approached this task by employing a 
model system consisting of the addition of known determin-
istic signals to baseline EEGs and determined the parameter 
choices that best permitted detection of the added nonlinear 
determinism. Our second aim was to use the analytical con-
ditions thus identified to assess the application of RQA to 
detect the putative changes in brain electrical activity associ-
ated with the presence of multiple sclerosis.

2  Methods

2.1  Subjects and EEG Measurements

Patients with multiple sclerosis were recruited from the out-
patient neurology clinic. Inclusion criteria were: definite MS 
[20] with a relapsing–remitting course, but in remission; 

Expanded Disability Status Scale (EDSS) score ≤ 3.0 [21] 
for at least 3 months prior to inclusion in the study; absence 
of acute relapses and intravenous corticosteroid treatment 
for at least 60 days before inclusion in the study. The criteria 
resulted in the identification of 10 patients who volunteered 
to participate in the study, all of whom were females. The 
average age of the patients was 33 years (range 18–52 years). 
The subjects in the control group were recruited from the 
general population; the group consisted of ten gender- and 
age-matched females who had no medical complaints (aver-
age age 34 years, range 24–53 years). Written informed con-
sent was obtained from each participant. The institutional 
review board at the Louisiana State University Health Sci-
ences Center approved all experimental procedures.

Our approach was based on the theory that the EEG 
signal is an instantaneous sum of electrical contributions 
propagating from numerous neuronal networks. By hypoth-
esis, some networks were affected by the presence of disease 
resulting in dynamical changes in their contributions to the 
signal recorded on the scalp. The recurrence method char-
acterizes the global dynamical activity of the brain, thus, it 
could probe alterations in brain electrical activity from any 
recorded EEG derivations. EEGs were recorded continu-
ously for 10 min from  O1,  O2,  C3,  C4,  P3, and  P4 derivations 
(International 10–20 system) referenced to linked ears, using 
gold-plated electrodes attached to the scalp with conductive 
paste; electrode impedances were less than 10 kΩ. During 
recording of the EEG the subjects sat in a darkened room 
on a comfortable chair with their eyes closed. The signals 
were amplified (Nihon Kohden, Irvine, CA), analog-filtered 
to pass 0.5–35 Hz, sampled at 500 Hz, and analyzed offline.

2.2  Recurrence Quantification Analysis

Use of RQA to analyze brain electrical activity involves 
phase-space embedding of EEG epochs, calculation of the 
corresponding recurrence plots, and quantification of the 
plots using an appropriate nonlinear quantifier. Briefly, 
digitized EEG epochs of length L were embedded in a mul-
tidimensional phase space employing an embedding dimen-
sion D and a time delay of τ points to produce a number 
N of time-lagged D-dimensional vectors, where N = L − τ 
(D − 1). The sequence of the N vectors (x1, x2,…,xN) cor-
responds to a trajectory in the phase space. The trajectory 
is represented in a two-dimensional plot called a recurrence 
plot [4]. In practice a recurrence plot  RPi,j is obtained by 
plotting a point in two-dimensions at the location addressed 
by (i, j) whenever the ith and jth state vectors were near. 
Two states (xi, xj) are near (“or recur”) if they occur within 
an m-dimensional spherical volume of fixed radius ε. Points 
in the recurrence plot correspondent to near states are called 
recurrence points.



Optimization of Recurrence Quantification Analysis for Detecting the Presence of Multiple Sclerosis

1 3

where �(⋅) is the Heaviside function, and ‖⋅‖ a norm used to 
calcite the distance between two state vectors in phase space. 
The Euclidean norm was used for calculating distances: 
states were considered recurrent when they were within 15% 
of the distance such that all points were recurrent.

Seven measures have been described for characterizing 
a recurrence plot [7, 22]. The principal variable is percent 
recurrence, %R, which enumerates the number of points in 
the recurrent plot. %R is defined as the number of recurrent 
points in the plot divided by the total number of point locations 
(places where a point could have been placed) excluding the 
main diagonal (where each state recurs with itself).

By definition, %R measures the amount of law-governed 
activity in a signal in the sense that higher values are inter-
preted to mean that the system which produced the signal is 
more predictable. Nevertheless %R is only a relative measure 
of the amount of recurrence present because its value depends 
on the definition of nearness (the stricter the definition the 
smaller the value of %R).

The remaining six RQA quantifiers are defined on the basis 
of geometrical features of the points in the plot which depends 
on length, number and distributions of diagonal lines and verti-
cal lines in the RP. Trend (TD) is the regression coefficient for 
the relationship between the density of recurrent points on a 
line parallel to the main diagonal of the plot and the distance 
from that diagonal; TD was initially intended to detect linear 
drift in a signal. Percent determinism (%D) is the percentage 
points in the plot that form diagonal lines. The number of adja-
cent points that form a line l is an adjustable parameter. Adja-
cent diagonal points in a plot correspond to successive states 
of the system, which is generally assumed to have occurred 
as the result of a deterministic law; in this sense %D is also a 
measure of the amount of the law-governed activity in a signal. 
Max Line (ML) is the length of the longest diagonal line; larger 
ML values are associated with more periodic systems. Entropy 
(ET) is the Shannon information entropy of the distribution 
of diagonal lines, measured in bits; larger ET values imply 
more complex dynamical activity. Percent Laminarity (%L) 
is the percentage of points in the plot that form vertical lines. 
Trapping Time (TT) is the average length of the vertical lines. 
We treated the geometrical measures as equally relevant and 
mutually independent variables.

RPi,j(�) = �

(
� −

‖‖‖xi − xj
‖‖‖
)

%R =
1

N(N − 1)

N∑

i≠j=1

RPi,j(�)

2.3  Modeling Procedure for Optimizing Signal 
Detection

Implementation of RQA requires choosing specific values 
for various adjustable parameters, including embedding 
parameters (phase space dimension and time delay), recur-
rence method parameters (recurrence nearness, deterministic 
line, recurrence epoch), and time series sampling frequency. 
Presently there is little systematic information available con-
cerning the particular choices of the parameters of the recur-
rence method that best permit characterization of the human 
EEG. Still more troublesome, theoretical rules for choosing 
embedding parameters offer no definitive answers regarding 
the choice of specific values for characterizing nonstationary 
time series [23].

We, therefore, employed a modeling procedure to identify 
empirically optimal embedding conditions for detecting the 
presence of known determinism in the EEG. For this pur-
pose, we added 1-s segments of law-governed activity (Valt) 
in a point-by-point faction to baseline epochs of EEG (Vorg), 
and then we used RQA to systematically investigate the con-
ditions that optimized our ability to detect the added signals 
by comparing the augmented epochs (Vaug= Vorg + Valt) with 
baseline epochs (Vorg).

Two kinds of deterministic signals were employed. The 
first signal consisted of segments obtained from a solution of 
the Lorenz equations with parameters in the chaotic domain 
(10, 28, 2.67 for σ, r, and b, respectively), [23]. The second 
signal consisted of segments of a 10-Hz signal, which is a 
prominent frequency in the human EEG. Each added seg-
ment was unique (different segments of the Lorenz equa-
tions, phase-randomized segments of sine wave).

The modeling analysis was performed using S/B of 0.1, 
0.4, and 1.0, where S is the root-mean-squared (rms) value 
of the deterministic segment added to the EEG and B is 
the rms value of the baseline EEG epoch to which it was 
added. A number N = 100 of free-artifact epochs from each 
derivation were used for in the modeling procedure. The 
modeling analysis was repeated in ten independent EEG data 
sets recorded from healthy subjects using time delays (τ) of 
1–5 points, embedding dimensions (D) of 3–7, line values 
of 2 and 20. A total of 9000 simulations (10 subjects × 6 
derivations × 5 time delays × 5 embedding dimensions × 2 
line parameters × 3 signal-to-baseline ratio) were run in the 
modeling study. The results of the modeling procedure were 
independent of the particular EEG electrode, therefore data 
from derivation O1 are displayed in the modeling results. 
All the calculations were carried out using a custom code 
(Matlab, Mathworks, Natick, MA).



 S. Carrubba et al.

1 3

2.4  Clinical Study

Using RQA embedding conditions optimized for maximiz-
ing the detection of the Lorenz and random-sine determin-
ism, we compared MS and control group data. The design 
of our study incorporated the assumption that electrical sig-
nals recorded from different derivations carried essentially 
the same dynamical information, and that any differences 
between specific electrodes was due to variations in EEG 
baseline activity and did not carry specific physiological 
information. Thus, for each participant we computed the 
mean values of RQA variables from each derivation (using 
free-artifacts 1-s epochs/signal) and then averaged the results 
across all six electrodes to form the grand means which were 
used in the planned comparisons.

2.5  Statistical Analysis

The model data was evaluated using the unpaired t test to 
compare baseline control EEGs epochs and augmented 
EEGs formed by point-wise addition of the nonlinear sig-
nals Vaug. The clinical data was evaluated using the unpaired 
t test to compare the MS and control groups. In both stud-
ies, the pair-wise significance level was p < 0.05. To pro-
vide protection against family-wise error when evaluating 
the hypothesis that the clinical groups differed, we required 
that the statistical comparisons involving at least two of the 
seven RQA variables were pair-wise significant at p < 0.05, 
which resulted in a family-wise error rate  (PFW) of less than 
0.05. As a control procedure the modeling and clinical data 
was also analyzed by time averaging and spectral analysis, 
using the relative power in 0.5–7 Hz, 8–12 Hz, 13–20 Hz, 
and 21–35 Hz.

3  Results

3.1  Model Study

The EEG was highly nonstationary (Fig. 1). The histogram 
of the first zero of the autocorrelation function values—a 
measure of the correlation between observations of a time 
series—computed for 1-seconds EEG epochs indicated that 
the statistical properties of the EEG were nonstationary 
(Fig. 1a). Estimation of the embedding time delay based 
on computation of the first minimum of the average mutual 
information (AMI), a method which provided more stable 
results for the computation of time delay than the method 
based on autocorrelation function [24], also produced val-
ues of the parameter that changed significantly from sec-
ond to second (Fig. 1b). Nevertheless the EEG contained 
law-governed activity as revealed by the presence of char-
acteristic patterns in their recurrence plots (Figs. 2a and 3a, 

top panels). Mathematically certain signals from the Lor-
enz equations also appeared irregular, but exhibited more 
pronounced patterns in the recurrence plots (Fig. 2a, center 
panel). Sine signals are periodic and exhibited distinct regu-
lar patterns in the recurrence plots (Fig. 3a, center panel). 
When a randomly chosen 1-s Lorenz segment (Valt) was 
added to a 1–s epoch of EEG (Vorg) obtained from the  O1 
derivation of a clinically normal subject such that Valt had 
an rms value 40% of that of Vorg, the linear sum (Vaug) typi-
cally resulted in RP similar to those of the original epoch 
(Fig. 2b, bottom panel). Similar results were found when the 
added deterministic signal was a 10-Hz sine wave (Fig. 3b, 
bottom panel).

Although the addition of segments of deterministic sig-
nals to EEGs typically produced relatively small changes 
in the recurrence plots, statistical analysis across free-arti-
fact trials (N = 100) confirmed that the added determinism 
had a statistically significant effect on the RQA quantifiers 
(Fig. 4). The optimal delay depended on the nature of the 
determinism, as evidenced by the relative inefficiency of 
τ = 1 for detecting the effect of adding the Lorenz signal, 
but not for detecting the effect of adding the sine signal. For 
Lorenz determinism, detection was more efficient at a line 
of 2 compared with 20; in contrast, a higher value of the line 
parameter did facilitate detection of the sine determinism. 
For the Lorenz signal, Trend and Max Line were ineffective 
in detecting any change under all embedding conditions. 
For the sine, Max Line was ineffective, but trend resulted 
in detection in all three data sets for almost all embedding 
conditions. When the added determinism was detected, the 
numerical values of the RQA variables were less for Vaug 
compared with Vorg; the exceptions were trend in connection 

Fig. 1  Time delay estimation. Histograms of a the first zero of the 
autocorrelation function (FZAC) and b the first minimum of the aver-
age mutual information (FMAMI). FZAC and FMAMI were deter-
mined second-by-second from 10 min EEGs recorded from 6 deriva-
tions from 10 healthy subjects (~ 36,000 s, Fs = 500 Hz). The results 
were divided into 4-ms bins (time-delay = 2), averaged, and normal-
ized
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with sine determinism in all the analyzed sets, and Max Line 
in connection with both Lorenz and sine determinism. A 
wide range of embedding conditions was considered in the 

modeling studies. Although various combinations of the 
embedding conditions permitted detection of the effect of 
addition of the determinism, and variations occur among 

Fig. 2  Detection of added Lorenz segments. a  Vorg, original one-sec-
ond epoch of EEG (top panel);  Valt, Lorenz segment (L), (rms 40% 
of  Vorg), (center panel);  Vaug, point-wise sum of  Vorg and  Valt (bottom 
panel). Dimension 5, Time delay 5 points (10 ms), Line 2. b Average 
results. Results for line = 20 shown in parentheses

Fig. 3  Detection of added sine segments. a Vorg, original 1-s epoch 
of EEG (top panel); Valt, sine segment (S), (center panel); Vaug, point-
wise sum of Vorg and Valt (bottom panel). Dimension 5, Time delay 5 
points (10 ms), Line 2. b Average results (N = 100 epochs). Results 
for line = 20 shown in parentheses
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subjects, we found that the value of 5 for embedding dimen-
sion and time delay permitted optimal detection of the added 
determinism. Only D = 5, τ = 5 resulted in detection of both 
signals in more than one RQA variable in all the ten ana-
lyzed data sets (Fig. 4 shows exemplar results from 3 inde-
pendent data sets). The detection of added determinism did 
not depend on the particular derivation (results from O1 
derivation are displayed in Fig. 4).

The overall modeling procedure was repeated twice after 
adjusting the rms value of the added signal to equal either 
10% or 100% of the corresponding EEG epoch. At 100%, 
the presence of added determinism was detected by all RQA 
variables (except Max Line) in all embedding conditions; 
at 10%, it was not detected in any of the tested conditions.

Spectral analysis was ineffective in detecting the deter-
ministic added signals with the exception of alpha relative 
power for detecting sine wave using signal-baseline-ratio 
ratio 1.

3.2  Clinical Study

Using the optimal embedding conditions from the model 
(D = 5, τ = 5), we analyzed the EEGs from patients with 
MS and from control subjects using line values of 2 and 
20, and found 7 pair-wise significant comparisons among 
11 independent tests, indicating that the brain electrical 
activity of patients with MS different from that of controls 
(Fig. 5). The grand mean ± SD of %R for the patients with 
MS was 6.6 ± 1.3%, compared with 5.1 ± 1.3% in the normal 
group (P = 0.017). The other two line-independent quanti-
fiers (Trend and Max Line) were also increased (p < 0.05) 

in the MS group (Fig. 5a). Among the line-dependent quan-
tifiers, %D was the only one that did not register a statis-
tically significant difference between the MS and control 
groups (Fig. 5b and c). The fraction of recurrence points that 
formed vertical lines (%L) decreased greatly with increased 
line and, at line = 20, resulted in the loss of statistical dif-
ference between the means of the groups. In contrast, the 
mean length of the vertical lines (TT) increased when the 
line parameter was 20, and the difference in the averages of 
the two groups increased markedly.

Separate analysis using data from individual electrodes 
were performed, and the overall results were the same as 
those showed in Fig. 5 (data not shown). When the analy-
sis was repeated after blocking on electrode derivation, as 
expected, inter-subject and inter-electrode variations were 
detected. We attributed these variations to random statistical 
effects due to fluctuations in the EEG background activity. 
The significant differences between MS and control groups 
were mostly observed across the central and occipital deriva-
tions (Table 1). The grand mean ± SD of %R for the patients 
with MS was 6.8 ± 2.0%, compared with 4.8 ± 1.8% in the 
normal group (P = 0.014). On the contrary, spectral analysis 
yielded no evidence of intergroup differences (Table 2).

4  Discussion

4.1  Model Results

Various analytical methods have been proposed to objec-
tively capture physiological information in the EEG that 

Fig. 4  Detection of addition 
of deterministic segments to 
the EEG. Either Lorenz or 
randomized-phase sine one-sec 
segments (left and right panels, 
respectively) were added to 
baseline EEG epochs (N = 100) 
and the computed RQA vari-
ables were compared between 
the augmented and original 
signals at each of the indicated 
embedding conditions for line 
values of 2 and 20, using the 
paired t test (S/B = 0.4). Com-
parisons from three independent 
data sets are shown. Conditions 
that resulted in pair-wise signifi-
cant differences are indicated 
by shaded squares. Dark (light) 
shading indicates that the value 
of the RQA variable for the aug-
mented signal was less (greater) 
than that of the original signal
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had been presumed to be coded in the signal ever since it 
was discovered. Spectral analysis has been partially success-
ful, but it is based on the assumption that the EEG is the 

sum of individual stationary oscillators, which is inconsist-
ent with the modern view of cognitive processing [25–27]. 
RQA, in contrast, does not assume the existence of oscilla-
tors or require that brain electrical activity be the result of 
autonomous differential laws. RQA is therefore independ-
ent of nonlinear dynamical theory, but this property carries 
with it the limitation that the parameters associated with 
the method, especially the embedding parameters, must be 
determined empirically rather than by means of theoretical 
rules (Fig. 1). On the other hand, a completely empirical 
approach is possible in which the values of RQA quantifiers 
of groups of biological data are compared statistically to 
produce biological knowledge of potentially great practical 
significance. We followed this approach.

Using time series of brain electrical activity to which 
known deterministic signals had been added, we identified 
D = 5, τ = 5 as embedding conditions that maximize detec-
tion of Lorenz and random-phase sine wave signals that were 
added to EEG (Figs. 2, 3, 4). For several reasons, the added 
signals were reasonable surrogates for putative changes asso-
ciated with the presence of brain disease. First, the added 
signals did not materially change the rms value of the origi-
nal EEG segment. Thus Vaug and Vorg mimicked the actual 
clinical situation (no difference in the rms of the EEGs of 

Fig. 5  Use of RQA to detect 
the presence of multiple 
sclerosis (MS) in electroen-
cephalographic time series. 
a Line-independent vari-
ables. b Line = 2. c Line = 20. 
Dimension 5, Time delay 5 
points (10 ms). Grand average 
and standard errors across all 
derivations

Table 1  Effect of electrode derivation on the comparison of brain 
electrical activity between patients with MS and normal controls, 
assessed using the RQA variable %R. Mean ± SE for the O, C, and P 
derivations

C P O Combined 
derivations

MS 6.8 ± 2.0 5.8 ± 1.1 7.1 ± 2.0 6.6 ± 1.3
Normal 4.8 ± 1.8 5.2 ± 1.3 5.5 ± 1.2 5.1 ± 1.3
P value 0.014 0.150 0.060 0.017

Table 2  Evaluation of electroencephalograms using spectral analy-
sis. Relative power in four frequency intervals compared between ten 
subjects with multiple sclerosis (MS) and ten clinically normal sub-
jects. Mean ± SE for O, C, and P derivations

0.5–7 Hz 8–12 Hz 13–20 Hz 21–35 Hz

MS 50.4 ± 19.7 29.4 ± 20.3 11.6 ± 6.3 4.4 ± 2.2
Controls 60.3 ± 15.6 26.0 ± 13.7 13.6 ± 5.9 3.3 ± 2.2
P value 0.140 0.639 0.721 0.654
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MS patients compared with the EEG of clinically normal 
subjects). The power spectra of the added signals were also 
consistent with those of the EEG. Second, the parameter 
values that optimized detection of the added deterministic 
signals were identical to those previously reported for the 
detection of nonlinear EPs triggered by auditory, electro-
magnetic, and visual stimuli [15–17], which we interpret as 
evidence of the validity of the model system.

We systematically analyzed the model system data 
because any statistical difference between Vaug and Vorg 
would indubitably have been the result of the added sig-
nals. We reasoned that not only would the corresponding 
embedding conditions be a good first choice for analyzing 
the EEGs, but also that the modeling would provide insight 
into the nature of the effect of deterministic activity on the 
RQA values of the baseline signal. However, we found no 
obvious general rules (Fig. 4). For example, low values of 
time delay were ineffective for detecting the Lorenz signal, 
but not for detecting the sine signal. As another example, 
Trend and Max Line values were consistently lower in the 
augmented EEG as compared to the EEG baseline when 
detecting Lorenz and random sine signals, while the other 
RQA variables were consistently higher. Taken together, 
these observations suggested to us that future studies involv-
ing attempts to develop recurrence plot analysis for disease 
detection might conduct a similar dimension/delay-time 
analysis directly involving the biological time series. Mod-
eling might be employed in a less prominent role, for exam-
ple to test a hypothesis that a particular rule of interpretation 
is generally valid, or to explore the possible role of RQA 
parameters such as radius.

4.2  Results of Clinical Study

The recurrence values computed from the EEG of patients 
with MS differed significantly from the corresponding con-
trol values in seven of eleven comparisons (Fig. 5). Overall, 
six RQA variables showed a statistical significant difference 
when MS and control groups were compared, and indicated 
a decrease in law-deterministic activity associated with the 
presence of the disease. Links between increased predicta-
bility (in our clinical study, higher values of RQA variables) 
and disease have been previously reported. EEGs in patients 
with Alzheimer’s disease were less complex and more regu-
lar than in healthy control subjects [28, 29]. Postural insta-
bility in patients with Parkinson’s disease was less complex 
and more rigid compared with healthy controls [30]. Ironi-
cally, %D, the RQA variable for which a dynamical mean-
ing has most frequently been asserted, was the only vari-
able that did not discriminate between the groups (Fig. 5). 
The strongly band-limited nature of the EEG is a possible 
explanation. The EEG is typically sampled at 100–500 Hz, 
and band-limited by analog filtering to 0.5–35 Hz, which 

produces a signal with a %D of about 98%. Thus, there is 
not much room for change, if the results of the intervention 
make the system even more deterministic.

Using conventional frequency analysis, and compar-
ing the power spectrum across four frequency bands, we 
were unable to differentiate between MS and control groups 
(Table 2). However, other literature studies have proposed 
more complex spectral methods to examine cognitive dys-
function associated with multiple sclerosis [31–33] and cog-
nitive impairment diseases [34–36].

Demonstrating that a disease group differs from a control 
group, on average, is a necessary but not sufficient basis for a 
diagnostic test, which involves a decision regarding an indi-
vidual. In addition, although, recurrence method is poten-
tially useful in conjunction with other standard diagnostic 
methods, its specificity to a particular disease is unknown. 
One possibility for improvement in the sensitivity and speci-
ficity of RQA for clinical diagnosis might be the discovery 
of embedding conditions that discriminate more completely 
between the groups. Discrimination might also be achieved 
by employing a discriminant function involving several 
RQA variables.

4.3  The Role of RQA in Medicine and Biology

Recurrence plots permit visualization of patterns encoded 
in a time series and, at least for stationary closed systems, 
the images may be interpretable in terms of the dynamics 
of the underlying system [4]. By using inspection alone (no 
information regarding governing equations), it is not pos-
sible to determine whether a plot was derived from an open 
or closed system, or an empirical or theoretical system. This 
consideration suggested to us that there is a fundamental 
distinction between invention of the recurrence plot (RP) 
by Eckmann et al. [4] and the invention of recurrence quan-
tification analysis (RQA) by Webber and Zbilut [5]. The 
usefulness of RP invention is based on visualization of the 
plot in conjunction with other visualizations of the system’s 
dynamical activity, for example those depicting bifurca-
tion in the system or the presence of chaos [37]. On the 
other hand, we can look at RQA invention as a numerical 
replacement of the plot, or as a transformation of the plot 
into numbers, thereby facilitating hypothesis-testing, thereby 
permitting testing of hypotheses such as “Drug X caused 
more tissue damage than drug Y.”

It is difficult to overestimate the potential significance of 
the RQA invention with regard to the analysis of biological 
time series, particularly extraordinarily complex series such 
as those generated by brain activity. The invention permits 
numerical characterization of recurrence (interpreted as 
law-governed activity) in any biological time series, and no 
other method is capable of doing so. The barrier that must be 
overcome to exploit biological applications of RQA involves 
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the formulation and validation of rules within which one 
attempts to answer the basic question “Is time series A dif-
ferent from time series B?” Unlike the RP invention wherein 
the existence of governing equations in a time series could 
be used to guide interpretations of a plot, the RQA inven-
tion provides no built-in interpretational standard. Such 
standards exist, however, in the form of basic principles of 
experimental design. If, for example, %R in an independent 
series of trials obtained from a biological system in state 
A differed significantly (p < 0.05) from the corresponding 
values when the system was in state B, it may be reasonable 
to conclude that the factor which differed between the two 
states was the cause of the difference in %R, in other words, 
that the system detected the factor. The point is that the RP 
and RQA inventions have markedly different advantages and 
disadvantages and apply in different realms. The RP inven-
tion may provide almost certain knowledge regarding the 
behavior of conceptual systems, whereas the RQA invention 
may provide imperfect but important, unique information 
regarding the behavior of empirical systems.
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