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Analysis of Brain Recurrence

Clifton Frilot II, Paul Y. Kim, Simona Carrubba, David E. McCarty,
Andrew L. Chesson Jr., and Andrew A. Marino

Abstract Analysis of Brain Recurrence (ABR) is a method for extracting
physiologically significant information from the electroencephalogram (EEG),
a non-stationary electrical output of the brain, the ultimate complex dynamical
system. ABR permits quantification of temporal patterns in the EEG produced by
the non-autonomous differential laws that govern brain metabolism. In the context
of appropriate experimental and statistical designs, ABR is ideally suited to the
task of interpreting the EEG. Present applications of ABR include discovery of a
human magnetic sense, increased mechanistic understanding of neuronal membrane
processes, diagnosis of degenerative neurological disease, detection of changes in
brain metabolism caused by weak environmental electromagnetic fields, objective
characterization of the quality of human sleep, and evaluation of sleep disorders.
ABR has important beneficial implications for the development of clinical and
experimental neuroscience.
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Abbreviations

ABR Analysis of brain recurrence
AHI Apnea–hypopnea index
ARA Aperiodic rhythmic activity
EEG Electroencephalogram
EEP Electrosensory evoked potential
EMF Electromagnetic field
EP Evoked potential
FZAC First zero of the autocorrelation function
MEP Magnetosensory evoked potential
MS Multiple sclerosis
REM Rapid eye movement
WASO Wake after sleep onset

7.1 Introduction

Human behaviors including somatic, cognitive, and emotional responses to stimuli,
therapeutic reactions to drugs, and changes in signs or symptoms during progression
of acute and chronic diseases are all mediated and controlled by the brain. Even
though its structural complexity is daunting and its differential laws are mysterious,
we accept the idea that the brain always acts lawfully. How it does so has been a
perennial subject of scientific and philosophical interest.

In principle, the task of explaining the behaviors could be approached by
attempting to deduce equations of motion, akin to the Hamiltonian formulation of
mechanics, or by following a statistical approach similar to the determination of the
pressure in a vessel by averaging over many atomic-level motions. But brain activity
is such a complicated process that we have nil expectation it can be profitably
analyzed by means of these traditional approaches. But even though we cannot
deduce the brain’s governing differential laws, we are certain that they exist, because
the behaviors governed by brain activity are lawful, not random.

Even though the task of understanding brain function as a necessary consequence
of its differential laws is probably impossible, other goals regarding brain function
can be achieved. An ability to make reliable predictions of human behaviors has
enormous practical benefits in the fields of translational medicine and experimental
neuroscience, even if the predictions are only probabilistic. Our primary goal here
is to show how recurrence analysis, when employed in the context of an appropriate
experimental and statistical framework, a technique we call Analysis of Brain
Recurrence (ABR), yields such benefits.

In the next section we provide foundational information regarding the structure
and function of the brain, with emphasis on the complexity conjecture, a funda-
mental principle that undergirds the unique applicability of recurrence analysis to
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the study of brain activity. We shall see why recurrence analysis is extraordinarily
well-suited for brain studies.

The following section describes the origin of recurrence analysis and what it
is when looked at from the perspective of brain studies. Recurrence analysis is a
remarkable invention that stemmed from the keen insight that biological systems
are not crude versions of physical systems but rather irreducibly complex systems
whose understanding for useful purposes requires novel analytical methods. The
basic properties of recurrence analysis are discussed, and its ability to detect law-
governed activity is demonstrated.

Next we present the results of published studies that encompass our applications
of ABR. They include discovery of a human magnetic sense, the diagnosis of
multiple sclerosis, detection of changes in brain metabolism caused by weak
electromagnetic fields (EMFs), insights into the biophysical and physiological bases
of EMF transduction, and applications to the objective characterization of sleep
and the diagnosis of sleep disorders. Recurrence analysis must be employed in
an appropriate statistical context to permit its results to go beyond geometric
curiosities and reliably generalize to real-world problems. Consequently the true
error rates for the hypotheses tested are listed, and references are provided to the
original descriptions for the statistical details. The applications of ABR chosen for
discussion should give the reader a good idea of its capabilities and limitations.

In the final section we attempt to place ABR in the general context of the scientific
method so that the rock-solid foundation of ABR is clear. In contrast with attempts
to explain the world in terms of time-reversible linear differential laws, ABR has
different goals, makes opposite assumptions, and yields rewards not otherwise
obtainable.

7.2 The Brain

7.2.1 Physiological Role

The brain is an open system that constantly interacts with the environment and
incessantly changes, always existing in far-from-equilibrium states (Fig. 7.1). A
continuous flow of mass, energy, and information crosses the skin and drives
the brain’s ceaseless activity, which occurs during the presence and absence of
recognizable stimuli and ceases only in death. The brain generates information and
also changes its internally-generated programs in response to information obtained
from the environment. These processes embed the world in a unique context for
each individual, determined by time and experience. The brain’s governing laws
are necessarily nonlinear and non-autonomous, because linear and/or autonomous
systems don’t move or change themselves or exhibit irreversible changes.

The physical appearance of the brain belies its abilities. The brain is small, about
0.34 kg at birth, 1.4 kg at maturity, 1.3 kg in advanced old age [1], and easily
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Fig. 7.1 Continuous flows of mass, energy, and information drive the brain’s master-control
function, which is the governance of the body’s three main regulatory systems. Facilitated by
interactions among a relatively small number of local neuronal networks, the brain receives
numerous chemical and energetic inputs, and produces numerous outputs. The interactions
determine all observable responses and behaviors, including the electroencephalogram (EEG). We
regard observations and their contemporaneous EEGs as physiological doppelgangers that code for
each other

deformed, like a gel. The brain’s abilities ultimately arise from the conjoint opera-
tion of the laws of mechanics, electricity, and thermodynamics in the context of what
is probably the most complex structure in the universe. The brain’s cellularity and
microscopic anatomy consists of �1011 distinct cells called neurons, with �1014

contacts between them [2], all of which are self-organized into �102 structural and
functional networks that are fed and nurtured by �1012 support cells of various
types [3]. Information transfer at the neuronal level is reasonably well understood
conceptually in terms of neurotransmitters, neuromodulators, cytokines, direct
electrical communication between cell interiors via gap junctions, and electrotonic
conduction through the extracellular fluid [4]. Some phenomenological descriptions
of neuronal signaling have been developed, the Hodgkin–Huxley equations for
example, but there are no direct explanations based on general laws.

At the organ level almost nothing is known about what governs brain activity, and
we lack even phenomenological descriptions. Explaining human behaviors at the
level of individuals is therefore problematical. Nevertheless each brain signs itself
by producing an electroencephalogram (EEG), a time-dependent voltage signal
conventionally measured on the scalp (Fig. 7.2) (measurable anywhere on the skin
but with reduced sensitivity because of the passive electrical properties of tissue).
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Fig. 7.2 Scalp locations and
labels for EEG measurements
(10–20 system). The EEG is
measured at standardized
locations on or symmetrically
distributed about the
mid-sagittal plane [5]. The
locations are identified by
rules based on proportional
distance measurements made
in relation to arcs between the
nasion and inion, and
between the ears

7.2.2 The Baseline EEG

The EEG (Fig. 7.2) is an emergent property of the dynamical activity of the brain,
and consequently has no specific origin, like a smile. We conceptualize the EEG as
a state property of the brain in the sense that some of the information it contains
involves the cooperative activity of all its cells. In principle, an EEG measured
during an arbitrary time interval would have been different if even one neuron had
died immediately prior to the beginning of the interval.

The spectral energy in the EEG occurs almost entirely below 50 Hz. The signal
therefore cannot directly reflect rapid electrophysiological events occurring at the
neuronal membrane [4]. Attempts to interpret the EEG in relation to phenomena
associated with higher organizational levels have traditionally been based on use of
the root mean square of the signal (time averaging), or on its Fourier decomposition
with subsequent determinations of relative power in standard frequency intervals
(spectral analysis). The variables associated with both methods were assumed
to be classical stochastic variables (described by fixed probability distributions).
Unfortunately the EEG is dramatically non-stationary over the time scales pertinent
to the problem of interpreting the EEG (Fig. 7.3). This salient fact conflicts with the
logic of linear methods like time averaging and spectral analysis. Valid use of these
methods requires that differences in means of dependent variables arise solely from
changes in the independent variables, not from changes in the dynamical law of the
system. But that is exactly what occurs in the brain, evidenced by the nonstationarity
of the EEG (Fig. 7.3). In marked contrast, stochasticity is irrelevant to the validity of
ABR. Indeed, its fundamental value is that it permits characterization of the brain’s
non-autonomous activity, which is where human behaviors actually come from (see
below).
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Fig. 7.3 Nonstationarity in the human EEG during wake and sleep. (a) EEGs were recorded
for 5 min (O1, O2, P3, P4, C3, C4) from each of ten vigilant subjects, and the first zero of
the autocorrelation function (FZAC) was determined second-by-second. The results (�1,800
values/subject) were divided into 4-ms bins, averaged, and the resulting histogram was normalized.
(b) EEGs (from C3) were recorded for 7–8 h from each of ten sleeping subjects, and the mean
normalized FZAC histogram (�28,000 values/subject) was determined. The histograms of the
EEG during both wake and sleep indicate that the statistical properties of the EEG change
drastically from second to second, which is the definition of a nonstationary time series. The
nonstationary character of the EEG implies that brain activity is governed by non-autonomous
differential laws. Sampling rate, 500 Hz

7.2.3 The Stimulated EEG

Somatic and/or cognitive stimuli produce transient stereotyped electrophysiological
responses in the EEG called evoked potential (EPs), typically lasting 100–400 ms
and occurring 100–400 ms after application of the stimulus [6,7]. Stimuli trigger
both onset and offset responses, respectively caused by the onset and offset of the
stimulus. For example a light pulse from a light-emitting diode has an onset and
offset whose durations are the rise- and fall-times of the diode current, respectively,
and both aspects of the stimulus trigger an EP. Different sets of neuronal networks
are involved in attention to stimuli onset and offset [8–11]. The EPs are much
weaker than the baseline EEG, with which they become convolved.

Evoked potentials have traditionally been detected by time averaging the EEG
over intervals immediately following N application of the stimulus. The procedure
results in an increase in signal (the EP) to noise (the EEG) / p

N . Evoked potentials
not time-locked to the stimulus are undetectable by time averaging, and hence were
essentially unknown prior to the development of recurrence analysis (see below).
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Fig. 7.4 Present uses of the EEG

7.2.4 Uses of EEG

The main clinical use of EEGs occurs in sleep medicine, where measurements are
typically made from six derivations during overnight studies for use in character-
izing the stages of sleep (typically, the first step in diagnosing sleep disorders)
(Fig. 7.4). With the exception of epilepsy, EEG measurements play a minor role
in diagnosis of neurological diseases, having largely been supplanted by magnetic
resonance imaging. Evoked potentials are used clinically to evaluate the occurrence
of lesions in the peripheral nervous system. Robust utilization of EPs occurs in
experimental neuroscience because EPs are the only known method for objectively
characterizing the functional activity of the brain over times on the order of
milliseconds. In principle, the guilty mind (mens rea) and the lying witness can
be detected based on EEG analysis, but efforts to do so have been unsuccessful.
The absence of an EEG for a defined interval is a common basis for recognizing
death.

Following the development of the theory of low-dimensional nonlinear dynamics,
interest spiked in the possibility that the theory was directly applicable to the EEG.
Reports describing calculations of fractal dimension and Lyapunov exponents were
interpreted as evidence that the brain was a low-dimensional nonlinear system
operating in the chaotic mode, like the Lorenz model of weather [12]. But the
effort to show that EEGs were outputs of low-dimensional systems of the type for
which the theory was created ultimately failed [13]. Nevertheless new initiatives
developed, prompted by a dawning recognition that progress regarding under-
standing the lawfulness of the brain required approaches that were beyond linear
and low-dimensional nonlinear approximations, and more faithfully mirrored the
brain’s actual nonlinear dynamics, namely that it is governed by non-autonomous
differential laws, and probably has dimensions closer to 1010 than to 10. As we
shall see, ABR uniquely accomplished the task of revealing the footprints of the
laws.
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Fig. 7.5 The complexity conjecture regarding the origin of the human EEG. (a) Brain function
is mediated by electrical activity in localized neuronal networks and their dynamic internetwork
electrical connectivity, which result from synaptic and non-synaptic processes [4]. The instanta-
neous strength of the connectivity between local networks is represented by the color intensity
of the line that joins them. The EEG measured for any 4t from any derivation characterizes the
entire brain (brain state) during 4t. In practice, the time interval regarded as the characteristic
duration of the state is chosen in relation to the behavior of interest. As examples, 4t � 100 ms
for detecting evoked potentials, and 4t D 1 s for analyzing human sleep. (b) REM occurs when
REM-on neurons in the extended ventrolateral pre-optic area (eVLPO) inhibit REM-off neurons
in ventrolateral periaquaductal gray (vlPAG) and the lateral pontine tegmentum (LPT), whose
function is to actively inhibit REM-on neurons in the pre-coeruleus (PC) and parabrachial (PB)
networks (dorsolateral pons). The PC and PB networks send excitatory projections to the basal
forebrain (BF), hippocampus (HC) and neocortex, and to the sublateral dorsal nucleus (not shown)
from which neurons project to inhibitory interneurons which produce the muscle atonia that is
characteristic of REM sleep

7.2.5 Complexity Conjecture

An explicit statement of our perspective regarding the functional framework of brain
electrical activity will clarify why we expected ABR to be successful.

Cognition and physiological regulation are mediated by time-dependent electrical
interactions among spatially distributed neuronal networks [14–17] (Fig. 7.5). In
the absence of identifiable tasks or stimuli, network connectivity is highest in
wakefulness, and lower during sleep, or in subjects with neurological disease. A
decrease in connectivity corresponds to an increase in deterministic activity because
the brain becomes more machine-like. Complexity is decreased (deterministic
activity increased) during sleep and in association with neurological disorders.

The EEG during any particular time interval is a characterization of the global
electrical activity of the brain that occurred in the interval as the brain processed
inputs and generated outputs. If the inputs contain contributions from specific
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stimuli external to the subject, the EEG baseline brain state will contain additional
transient components called evoked potentials (EPs) that are convolved with the
baseline EEG. Whether characteristic changes in the determinism of the baseline
EEG or transient changes in the EEG actually occurred in association with changes
in the subject’s metabolism or environment are empirical questions.

The law-governed activity in the EEG can be detected by time embedding in
low-dimensional space whose dimensions are the instantaneously dominant brain
networks (Fig. 7.5). The dimensional variables are not stochastic variables and
therefore not generally associated with fixed probability distributions.

Next, the origins of recurrence analysis and the bases of its applicability to brain
activity are described.

7.3 Recurrence Analysis

7.3.1 Historical Development

Recurrence analysis developed as a means of exploiting the recurrence plot, a
graphical tool introduced to facilitate visualization of hidden patterns in time series
from low-dimensional nonlinear differential equations [18]. The plot was formed
by embedding a time series in dimension D using the method of time delays to
produce a sequence of N D-dimensional vectors. Xi, i D 1, 2 : : : j : : : N. The
sequence was represented in two dimensions by plotting a point at the location
addressed by (i, j) whenever Xi was near Xj. The plots were said to be useful
for revealing departures from autonomous behavior in physical systems such as
noisy Rayleigh–Bernard-convection data or Lorenz solutions with added drift [18].
Webber and Zbilut developed a method for quantifying the plots, and repurposed
them for application to biological systems [19]. The insights and innovations they
described are discussed below. Application of recurrence plots to physical systems
is reviewed elsewhere [20].

Webber and Zbilut recognized that outputs of biological systems exhibited
aperiodic rhythmicity which was intimately related to the physiological state of
the organism, but that no method existed for quantifying the rhythmicity. Linear
methods were sometimes used as first approximations, but they were formally
unsuitable. Linear theory assumes that variables are stochastic, and that two groups
of realizations of a stochastic variable are reliably different if and only if their means
differ by more than that expected on the basis of chance. But for variables governed
by nonlinear differential laws, a true difference between the groups may simply
be averaged away—the more measurements made or the more nonlinear the laws,
the less likely a true difference will be detected. Thus linear methods are prone to
obscure rather than reveal reality in those instances where it is governed by nonlinear
laws, which is typically the case for biological signals.
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Low-dimensional nonlinear theory similarly was no answer to the problem of
quantifying aperiodic rhythmic activity (ARA) in biological time series because
biological systems are invariably high-dimensional. Moreover, actual biological
systems such as the brain characteristically produced non-stationary time series,
a statistical property of the data which invalidated general application of the theory
and rendered meaningless the results of formal processes of calculating constants of
the motion.

They further observed that recurrence plots for successive time-series intervals
of common physiological signals exhibited patterns which changed in a more or
less regular way, suggesting that the changes in ARA were somehow dependent on
the state of the organism. These realizations led them to repurpose the recurrence
plot from a device that was originally designed for the exclusive purpose of
detecting non-autonomous deviations in autonomous systems, to a device that could
directly quantify changes in ARA in non-autonomous systems. Quantification was
accomplished by means of systematic procedures that mapped geometric features
of the plot into numbers.

They conjectured that the number of points in the plot relative to the possible
number (the N � N array) as well as various geometric features of the plot were
objective measures of the dynamical activity exhibited by biological systems.
Sequential application of the quantification step then yielded recurrence time
series that could be analyzed statistically, like an ordinary random variable. Thus
they made biological meaning of the quantitative temporal changes exhibited by
sequences of recurrence plots. In this manner, they transformed their plot measures
into bona fide dynamical variables, an entirely novel development in the history of
biological quantification. It is important to recognize that they did not claim any
specific physiological meaning for the variables. On the contrary, their examples
made clear that physiological meaning must be inferred empirically [19].

They defined several plot-based variables. Percent recurrence (%R) quantified
the amount of recurrence that existed in the system during the interval that the
embedded time series was generated (given the choices for the various parameters
related to embedding and plot formation). Graphically, %R corresponded to the
fraction of the area of the plot that contains points, but %R had no direct relation
to the structure of the plot. The other variables, in contrast, were measures of the
arrangement of the points.

Percent determinism (%D) characterized the number of points in the plot that fell
on diagonal lines. Various possible structures in the plots have differing dynamical
correlates. For example, consider three points along a diagonal (Fig. 7.6a, left
panel). By definition, the ith and jth points in phase space were near, as were the
consecutive states of the system (i1, j1 and i2, j2). In other words, the system’s
dynamics repeated for at least two successive states. The longer such behavior
continues (more adjacent points along the diagonal), the stronger is our conviction
that the plot reflected true law-governed activity. Vertical and horizontal lines result
from the nearness of a single state to a series of other states (Fig. 7.6b, c). The
diagonal line is the centrally important plot structure, probably because it has the



7 Analysis of Brain Recurrence 223

Fig. 7.6 Dynamical implications of lines in a recurrence plot. Left column, directions of lines
in a plot. Middle column, schematic representation of the corresponding points in phase space.
Red lines join points near another (based on the points shown and the definition of a plot). Right
column, representation of the system’s trajectory in phase space that produces the lines. Blue and
green points are located sequentially on two different segments of the trajectory

most direct and intuitive interpretation in terms of the system’s dynamical activity
(Fig. 7.6a). Other variables related to the distribution of diagonal lines in a plot have
also been defined [21].

Recurrence variables have no necessary relationship to dynamical theory, nor
any specific meaning in relation to any standardized unit of measurement. There
is no platinum bar as was accepted for the initial definition of a meter, and
no acknowledged functional characterization similar to the manner in which an
ohm was defined. Notwithstanding the absence of normative theories, definitions,
or conventions, the variables have important and practical physiological signifi-
cance that can be established directly by means of generally accepted scientific
methods.

7.3.2 General Properties of Recurrence Analysis

Numerical calculations of recurrence variables from EEG signals depend on the
values chosen for various parameters. There is no evidence that the principles
commonly recommended for choosing parameters in connection with analysis of
low-dimensional systems are optimal for analyzing the EEG. On the contrary the
principles may be misleading, at least to the extent they imply that the EEG is
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a stationary signal or the output of a low-dimensional system. Consequently the
parameters used for ABR must be determined empirically, to maximize sensitivity
for the effect sought.

The pertinent parameters include sampling frequency of the voltage time series,
the window employed in the recurrence calculation, the step size used to shift the
window along the time series (the shift parameter), the embedding dimension and
time delay chosen for the phase-space calculations, the choice of the number of
points regarded as necessary to constitute a line, and the definitions of nearness and
distance (in phase space).

The sampling frequency and recurrence window used in ABR were chosen
initially based on our estimates of the characteristic dynamical times in the
baseline EEG and the transient response evoked in the baseline by external stimuli.
Generally, %R and %D increased with increasing sampling frequency, but plateaued
as a function of window size, which permitted choices of minimum window sizes
that were optimal for capturing the determinism present in the signal.

Let V1(t) be an EEG interval; %R1(t) and %D1(t) are the corresponding percent
recurrence and percent determinism time series computed from V1(t). V2(t) is
a different EEG interval with corresponding recurrence times series %R2(t) and
%D2(t). In general

%R1;2 ¤ %R1 C %R2 (7.1)

%D1;2 ¤ %D1 C %D2 (7.2)

where %R1,2 and %D1,2 are the recurrence time series of V1(t) C V2(t), indicating
that recurrence determinations do not follow the law of superposition. As a
consequence of the non-applicability of the law of superposition, detection of the
presence of a signal (an “effect” in an experiment in which a subject is exposed to
a stimulus) can be manifested as any kind of a change in %R or %D relative to an
appropriate control, not necessarily as a unidirectional change. In other words, in
general, an effect due to a stimulus will be evidenced by a consistent change rather
than by a consistent directional change.

Another important characteristic of recurrence analysis of the EEG involves the
relationship between the recurrence time series and the EEG signal from which it
was calculated. Assume that a signal was added to the EEG during the time window
W, and that W was the window used for calculating each point in the recurrence time
series (Fig. 7.7). The added signal will combine point-by-point with the baseline
EEG. Some points in the recurrence time series will contain contributions from
the baseline but not the added deterministic signal. In Fig. 7.7, for example, only
one point in the recurrence time series includes all the determinism contributed by
V2(t). Thus, in general, the time interval in the recurrence time series that contains a
material contribution of the signal of interest will be shorter than the corresponding
time interval in the EEG during which the signal was present.
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Fig. 7.7 The relationship between the EEG and its corresponding recurrence time series. V1(t)
and V2(t) are continuous time series. V2(t) is non-zero during W. V1 C V2 is formed by point-wise
addition of the two signals. If W is the window employed for recurrence calculations, only the
center point in the recurrence time series will include all of the points in the composite that were
contributed by V2 (highlighted in yellow). All other points in the recurrence time series contain
some points for which V2 made no contribution, thereby lessening the overall ability of recurrence
analysis to detect V2. Typically the EEG sampling rate is 300 Hz and W is 30 points (100 ms)

7.3.3 Recurrence Analysis of Model Systems

7.3.3.1 Model Systems

The capability of recurrence analysis to detect nonlinear determinism present in the
EEG can be demonstrated by adding known deterministic signals to baseline EEG,
and comparing the altered time series with appropriate controls. The process models
the expected determinism associated with an EP, and affords the opportunity to study
the same time series before and after the addition of determinism, an impossibility
in actual EP experiments.

Baseline EEGs were recorded from standard derivations in normal human
subjects (Fig. 7.2), band-passed at 0.5–35 Hz (standard band for recording EEGs),
and sampled at 300 Hz. The recorded signals were divided into 2-s epochs; those
containing motion artifacts were discarded and artifact-free epochs were randomly
selected for use in the modeling procedures. To mimic transient deterministic signals
occurring in the EEG in response to sensory stimuli, sine or Lorenz signals were
added to the epochs. Three types of signals were considered: (1) a 10-Hz sine added
at t D 0.85–1.15 s to each of 50 2-s epochs such that the phase of the added signal
was identical in each epoch; (2) a 10-Hz sine with a phase that varied randomly from
epoch to epoch; (3) a portion of the solution from the Lorenz equation (a D 10.14,
r D 28, b D 2.67) [22]. In each case the rms signal-to-noise (S/N) ratio was 0.4, set
on an epoch-by-epoch basis.
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7.3.3.2 Detection of Nonlinear Determinism

When segments of sine waves were added to EEG epochs such that the phase of
the sine was always the same (negative slope starting at 0), the presence of the
sine was easily detected by time-averaging (Fig. 7.8b). But when the added sine
had a random phase, the added signal was not seen in the time-averaged signal
(Fig. 7.8c). The same result was found when the added signal consisted of segments
of a solution to the Lorenz equation (Fig. 7.8d). Thus, as expected, time-averaging
was unable to reveal the presence of known deterministic signals in the cases where
the signals were inconsistent (random-phase sine) or aperiodic (Lorenz). In contrast,
recurrence analysis detected the addition of inconsistent or aperiodic signals, as seen
by comparing the recurrence time series in the presence and absence of the added
segments (Fig. 7.9).

Localization of the added determinism was affected by the choice of the
recurrence window (Fig. 7.7) as well as by random fluctuations in the baseline
signals. For example, the random-phase sine wave yielded simulated effects at 0.90–
0.92 s and 1.05–1.15 s, even though the added deterministic signal was present
through the 300-ms interval centered at 1 s (Fig. 7.10a, bottom panel). Thus only
the approximate temporal location of the added determinism could be inferred from
an analysis of the recurrence result. Addition of Lorenz segments also illustrated the
point (Fig. 7.10b, bottom panel); in this case, statistically reliable demonstration of
the added signal was even more localized in time.

Detection of deterministic changes in the EEG was improved by averaging the
recurrence time series over a sliding window (called the P window, to distinguish it
from the window used for recurrence calculations) prior to statistical comparisons
of the E and C epochs (Fig. 7.11).

A further demonstration of the ability of ABR to detect nonlinear determinism is
shown in Fig. 7.12. The presence of a Van der Pol signal (Fig. 7.12a) was averaged
away in the EEGs (Fig. 7.12b) but was clearly demonstrated in %R(t) (Fig. 7.12d).

7.3.4 Overview of Recurrence Analysis of Brain Electrical
Activity

Recurrence analysis quantifies order in the EEG over any desired time interval,
ranging from milliseconds, as in neuroelectrophysiological studies, to intervals
lasting hours that are commonly employed in clinical diagnostic procedures. We
presented a broad outline of the uses and limitations of recurrence analysis, and
the reasons we anticipated that the method would be experimentally and clinically
useful.

The EEG necessarily differs between the presence and absence of stimuli, and
between the presence or absence of neurological disorders. In the next section the
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Fig. 7.8 Effect on EEG of addition of known signals. (a) Average of 50 2-s EEG epochs. (b) Effect
of adding a constant-phase 10-Hz sine to each epoch, showing the effect of the averaging in
revealing the presence of a phase-locked signal. (c) Effect of adding a random-phase sine to each
epoch, showing the inability of time averaging to reveal a nonstationary signal. (d) Effect of adding
segments of the Lorenz equation to each epoch, showing the inability of time averaging to reveal a
nonlinear signal

Fig. 7.9 Effect on %R(t) due to addition of nonstationary signals to the EEG. Top, average value
of %R computed from 50 2-s EEG epochs. Middle, after addition of random-phase 10-Hz sine
wave to each EEG epoch at t D 0.85–1.15 (shading). Bottom, time dependence of the point-wise
differences of the signals before and after addition of the sine waves. Similar results were obtained
following the addition of Lorenz segments. Sampling frequency 300 Hz. Embedding dimension 5.
Delay five points. Recurrence window (see Fig. 7.7) 100 ms. Moving window step 1 point
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Fig. 7.10 Detection of addition of known signals to the EEG. N D 50 randomly-selected baseline
epochs (E epochs) were compared point by point (t test) with N D 50 different randomly-selected
control epochs (C epochs). Known determinism was added to the E epochs where shown (shading).
(a) E versus C epochs in the absence of signals added to the E epochs (top), and after addition of
random sine to the E epochs (bottom). (b) E versus C in the absence of signals added to the E
epochs (top) and after addition of segments of the Lorenz signal to the E epochs (bottom). P,
probability that the means at the indicated point in time were identical (total of approximately 600
paired t tests). Gray line, P D 0.05. The rms values of the added signals were adjusted epoch-by-
epoch so that they were 40 % of the rms value of the EEG. The results show that recurrence analysis
can detect the presence of a localized transient deterministic signal in the EEG with statistical
certainty

goals, statistical structure, and results of experiments involving the capabilities of
ABR are described. Examples are presented that evidence the ability of recurrence
analysis to detect effects having profound implications for basic studies of brain
activity, and that demonstrate applications of the method in translational medicine.
The reader will see that recurrence analysis can produce knowledge of brain activity
that is not otherwise obtainable.
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Fig. 7.11 Optimized conditions for detection of added Lorenz segments using %R. (a–c) Point-
by-point statistical comparisons before and after addition of the signal to the baseline EEG, after
employing the indicated P window. P, probability that the means at the indicated point in time were
identical (total of approximately 600 paired t tests). Gray line, P D 0.05. The rms values of the
added signals were adjusted epoch-by-epoch so that they were 40 % of the rms value of the EEG

7.4 Application of Recurrence Analysis

7.4.1 New Paradigm for Studying the Brain

A seminal problem in modern biology involves understanding how weak elec-
tromagnetic fields (EMFs) (fields whose strength is below the level of conscious
detection) affect the growth and regulatory systems of the body, particularly
the brain [23]. Early work suggested that EMFs impacted brain metabolism as
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Fig. 7.12 Effects on %R(t) due to addition of Van der Pol segments to the EEG. (a) Representative
segment of solution to Van der Pol equations. (b, c) Respectively, the EEG and %R averaged
over 20 10-s EEG epochs before and after addition of 1-s Van der Pol segments where shown
(shading) to each epoch. (d) Comparison of the original and altered epochs point-by-point (t-test).
P, probability that the means at each indicated point in time were identical (total of 2,901 paired
t tests). EEG sampling frequency 300 Hz; RQA window 50 pts; embedding dimension 5; time
delay 5; radius 15 %; P value window 50 pts. Solution of the equation for the periodically driven
Van der Pol oscillator dy/dt D x – ßx sin(!t C �2) and dx/dt D –y – f (x) C ßy cos(!t C �1), where
f (x) D (1/3)x3 – �x, � D 3, ! D 6.455, ß D 45, �1 D 24, �2 D 26. Gray line, P D 0.05

evidenced by changes in the EEG, but the traditional analytical methods of time-
averaging and spectral analysis were inadequate in several respects [24].

Detection of familiar stimuli, light for example, occurs via a linear stimulus-
response system. Consequently evoked potentials (EPs) triggered by common
stimuli can be detected by time-averaging. But nonlinear responses cannot be effi-
ciently detected by linear methods because they are not matched to the underlying
dynamics. The first clear demonstration that EMFs consistently induced dynamical
changes in brain activity was made possible by the invention of recurrence analysis,
which permitted detection of nonlinear EPs [25]. Rabbits exposed to EMFs (2 G,
60 Hz magnetic field) exhibited a change in %D that was not seen directly in the
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Fig. 7.13 A new paradigm for studying brain function. (a) Apparatus for exposing rabbits to EMF
(2 G, 60 Hz magnetic field) or light (positive control stimulus). Stimuli on for 2 s during each 7-s
trial. (b) Average %D(t) calculated from the EEG (50 trials) of a rabbit exposed to EMF (left) or
light (right) [25]

EEG (Fig. 7.13). Even though the EMF was too weak to be consciously perceived,
statistically significant changes were observed in all the rabbits, and the effects
were manifested in both %R and %D (Fig. 7.14). Thus each of the recurrence
variables captured EMF-caused law-governed activity in the EEG that could not
be consistently detected by any other known method.

The generality of the phenomenon was established by showing that essentially
the same results were obtained in rats [26] and human subjects [27]. In the human
study, the EEG was measured from six derivations in each of eight subjects, and
the effects were essentially identical regardless of the derivation. This was the
expected result based on the complexity conjecture (Fig. 7.5), which assumed that
each EEG was a sample measurement of the same brain state. The overall results
[25–27] indicated that environmental strength EMFs could be transduced by the
nervous system, resulting in subliminal changes in brain electrical activity that were
consistently detectable by recurrence analysis, but not by linear methods of analysis.

7.4.2 Statistical Basis of Brain Recurrence Analysis

Application of recurrence analysis to biological time series requires an experimental
and statistical framework to permit the meaning of the calculations to be ascertained.
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Fig. 7.14 Effect of 2 G, 60 Hz on each of 10 rabbits, 5 female (No. 1–5) and 5 male (No. 6–10)
as assessed using percent determinism (%D) and percent recurrence (%R). For each rabbit and
each quantifier, the difference between the exposed and control EEG epochs was evaluated using
the Wilcoxon signed rank test. Window for recurrence analysis centered at 250 ms, with width of
250 ms. The average values of the quantifiers (˙SD) are presented for each rabbit [25]. With one
exception (%D, No. 9), statistical significance was obtained in each animal, for each recurrence
variable

One approach involves comparing the experimental and control recurrence time
series, point by point. For example consider a study in which EEGs were sampled at
300 Hz and analyzed to detect transient changes in brain electrical activity caused by
the onset and/or offset of an auditory stimulus [28]. During independent trials, the
stimulus was turned on and off and the inter-stimulus time period was used as the
control for the immediately preceding stimulus period. %R(t) was extracted from
the EEG and analyzed statistically to detect deterministic changes caused by the
onset and offset of the stimulus.

Stimulus onset produced the expected linear EP in the time-averaged EEG, which
peaked about 100 ms later (Fig. 7.15a, left panel). The EP was also seen in the
probability curve, which displayed the P values point by point in the corresponding
%R(t) relative to the controls (Fig. 7.15a, right panel). The EP was identified as a
continuous series of tests that were pair-wise significant at P < 0.05. In addition, a
nonlinear EP was detected (about 550 ms after stimulus onset) that was not resolved
in the average EEG. Fig. 7.15b depicts an instance in which the subject did not
exhibit a linear offset EP (left panel) but did exhibit a nonlinear EP detected by
analysis of brain recurrence (ABR) (right panel).

Statistical considerations are critical if the ultimate goal is to make reliable,
generalizable conclusions regarding the application of recurrence analysis. Simply
varying embedding parameters or evaluating multiple recurrence variables yields
only self-referential, non-generalizable results.
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Fig. 7.15 Statistical basis for detection of auditory evoked potentials using recurrence analysis.
Left panels, time-averaged EEG. Right panels, point by point probability (P) that %R(t) computed
from the stimulated EEG was equal to the corresponding values computed from the controls. (a, b)
EPs due to sound onset and offset, respectively [28]. Bars indicate EPs (>9 consecutive pair-wise
significant t tests) (N D 50 trials). EP, evoked potential. Gray line, P D 0.05. Total of 300 t tests
[28]

7.4.3 Discovery of Human Magnetic Sense

All known sensory modalities generate EPs in response to the onset and/or offset
of the cognate stimulus. Consequently observations of EPs is good evidence of the
existence of a sensory modality for the type of stimulus that elicited the EPs. We
hypothesized the existence of a human sense capable of detecting weak magnetic
fields, and used recurrence analysis to detect the EPs that we planned to interpret as
evidence of the putative sensory capability.

Subjects were exposed to either sound (positive control) or a magnetic field for 2 s
every 7 s (stimulus on at t D 0 and off at t D 2) (Fig. 7.16). Evoked potentials were
expected within 100–400 ms of the stimuli. The control interval for both stimuli was
the 1-s interval beginning at t D 5. In a study of 17 subjects, 16 subjects exhibited
magnetosensory evoked potentials (MEPs) (P < 0.05 for each subject) [29]; the
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Fig. 7.16 Use of recurrence analysis to detect nonlinear magnetosensory evoked potentials. A
computer-generated timing signal controlled application of the stimuli (on for 2 s, interstimulus
period of 5 s). Location of onset, offset, and control epochs of a typical trial are shown. Magnetic
field, generated by two sets of coils (separated by 65 cm), was homogeneous to within 5 %. Each
subject had 80 trials of each stimulus [29]

latencies and durations of the EPs varied within the expected ranges, depending on
the subject, and were triggered by onset and/or offset of the field. Onset results are
shown in Fig. 7.17. No MEPs were detected directly in the EEG using the method
of time averaging.

Because the ability to generate EPs is the hallmark of a sensory modality, the
results of the study indicated that human beings can detect magnetic fields [29]. The
existence of a human magnetic sense had not been discovered previously because
there was no reliable method of observing nonlinear EPs prior to the development of
recurrence analysis. When the new paradigm for studying the brain was employed
in an appropriate statistical framework, the existence of phenomena not otherwise
recognizable was validated. Both %R and %D were necessary to demonstrate the
consistency of the effect. Their joint use permitted consistent detection of EPs from
subject to subject, as would be expected if magnetodetection were a common human
capability.

Because the study objective was fully achieved using only two recurrence
variables, the other variables were not employed. In other words, %R and %D were
necessary and sufficient.

7.4.4 Rationalizing Inconsistency

A question raised by the discovery of a human sensory capability for EMFs
(Fig. 7.17) involved the nature of the dynamical relationship between the stimulus
and the response. Field-induced changes were detected by recurrence analysis but
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Fig. 7.17 Onset magnetosensory evoked potentials (MEPs) measured from occipital electrodes.
Latency and duration in each subject are indicated by a bar over the time axis, which show the
locations in the onset epochs within which individual points differed pair-wise (P < 0.05) from the
corresponding control points. Bar graph, %R(t) (average of the significant points) (SD not resolved
at scale presented). Alpha filtering was performed in nine subjects: S1, 3 (8–10 Hz), 5, 6, 9 (O1),
11, 12, 16, 17. ND, not detected [29]

not by linear methods, suggesting that responses of the subjects were governed
by nonlinear laws. Nonlinear systems do not follow the law of superposition, and
therefore the direction of their reactions to changes in external conditions cannot
be predicted. Under the hypothesis that MEPs were nonlinearly related to the field,
brain electrical responses exhibited by individual subjects would be expected to



236 C. Frilot II et al.

Fig. 7.18 Onset magnetosensory evoked potentials (MEP) in initial and replicate (performed at
least 1 week later) studies, using recurrence analysis. Latency and duration in each subject are
indicated by a bar over the time axis. Bar graphs, %R(t) (average of pair-wise significant points)
(SD not resolved at scale presented). ND, not detected [30]

differ even when the experimental conditions were replicated. The hypothesis was
tested in a group of eight subjects by comparing each subject’s response to a specific
magnetic stimulus at two times, at least 1 week apart. Intra-subject differences
were observed that were of the type manifested only when the laws governing the
relationship between the field and the responses were nonlinear (Fig. 7.18) [30].
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Analysis of brain recurrence facilitated the discovery of new phenomena and
new ways of characterizing brain activity, but ABR also had the unsettling effect
of requiring a reconsideration of the process by which meaning was made from
observations. Linear models of brain activity were so ubiquitous that the fun-
damental property of the models—adherence to the law of superposition—was
often adopted as a criterion of the reliability of observations. It is not, of course,
but that misconception commonly led to the false conclusion that inconsistent
data (Fig. 7.17) was unreliable [31]. Reflection on the actual meaning of the
reproducibility requirement of the scientific method reveals that the method requires
phenomena be reproducible. In the present study, for example, that brain activity
is reproducibly affected whenever the stimulus is applied, in accordance with the
system’s differential law. The reproducibility requirement applies to data only when
the differential law is linear.

7.4.5 Canonical Conditions and ABR Variables

The optimal conditions for ABR, given the range of physiological and clinical
problems considered thus far, were: sampling frequency 300–500 Hz; digital pass
band 0.5–35 Hz; embedding dimension 5; delay 5; radius 15 %; scaling Euclidean;
line parameter 2–20; recurrence window 30–500 points; P window 10–100 points.
In all cases these canonical conditions were determined empirically, with the
endpoint being the sensitivity with which the effect sought could be observed
at a predetermined level of acceptability of the false-positive rate. The adopted
parametric values were only bluntly optimal in the sense that reasonable departures
in one or even a few choices generally had no material effect on the results. Whether
future studies will require different parametric choices remains to be seen.

A further unresolved issue regarding ABR involves the potential usefulness of
recurrence variables other than %R and %D. The approach we ultimately adopted
regarding choices of variables was to begin with %R(t). When the putative effect
sought could not be detected consistently, %D was added to the analysis, with
appropriate care taken to ensure that the family-wise error rate for detecting an
effect remained at the appropriate level. Use of only these variables proved sufficient
to resolve all problems addressed thus far, and consequently the other suggested
recurrence variables [21] have not been employed in any published studies involving
ABR.

Despite the macroscale similarity of %R(t) and %D(t), use of both time series
was absolutely necessary to demonstrate the consistency of the phenomena under
investigation. An example is shown in Fig. 7.19 [32]. The subjects were exposed to
a brief magnetic stimulus (50 ms, 60 or 30 Hz) such that the onset and offset evoked
potentials (EPs) overlapped. The presence of the overlapped EPs was examined
in each of six derivations from 15 subjects. For a given stimulus, say 60 Hz, six
statistical tests were planned (one for each derivation) at a pair-wise significance
level of 0.05. If at least three tests were significant, we planned to conclude that
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the subject had exhibited an EP (family-wise error rate (PFW), 0.001). Otherwise,
six additional tests were done using %D(t). Based on %R, four subjects met the
a priori condition for exhibiting an EP (S1 (60 Hz), S11 (60 Hz), S12 (30 Hz),
S13 (30 Hz)). When the results using %D were added, five additional cases of
EP detection were revealed (S1 (30 Hz), S2 (60 Hz), S5 (30 Hz), S14 (30 Hz),
S15 (60 Hz)), an inference that was justified based on consideration of the family-
wise error rate. Analyses to reach the three-derivation threshold were conducted
two additional times with %R and with %D, but after filtering the EEG to remove
8–10 Hz or 9–12 Hz energy (an interval that made no material contribution to the
effect of the field, hence lowered the sensitivity of the t test), EPs (�3 derivations)
were found in 29 of 30 cases (Fig. 7.19, All Effects); S14 at 60 Hz was the exception.
The results were family-wise significant at P < 0.05 (account taken for the number
of tests performed) in 26 of the 29 cases (exceptions were S6 (60 Hz), p D 0.14; S12
(60 Hz), p D 0.25; S15 (30 Hz), p D 0.15).

Preconditioning the EEG time series (filtering at 8–10 Hz or 9–12 Hz) combined
with use of %R and %D has been sufficient to successfully resolve all experimental
questions regarding analysis of brain electrical activity considered thus far.

7.4.6 Inferring Mechanisms

We proposed that human detection of EMFs was mediated by an interaction of the
field with charged glycoproteins attached to the gate of an ion channel, resulting
in a force that tended to open the gate (Fig. 7.20a). The proposed model had
been shown to be energetically consistent with physical and thermodynamic laws
and sufficiently sensitive to respond to environmental-strength EMFs [33]. The
question considered was whether the mechanism was sufficiently rapid to explain
the observed field-induced evoked potentials. First we measured single-channel
currents in a species of fish known to be electrically sensitive and determined that the
EMF-sensitive membrane ion channels opened or closed in �0.2 ms (Fig. 7.20b).
We then applied a 0.2-ms magnetic stimulus to human subjects with the intent
of interpreting observations of evoked potentials as evidence that the ion channel
involved in field transduction was a force receptor (Fig. 7.20a).

A DC EMF that had a 10-ms rise-time and a 0.2-ms fall-time was used
(Fig. 7.20c). Onset potentials were observed in all subjects, and offset potentials
were observed in 60 % of the subjects [34]. These results were similar to those
found earlier when both the rise- and fall-times were 10 ms [29]. We concluded
therefore that the human EMF transduction system was capable of detecting fields
that changed at least as rapidly as 0.2 ms (on-to-off), thus supporting the theory that
transduction was directly initiated by a force receptor (Fig. 7.20a).

Time-varying magnetic fields induce electric fields in accordance with Faraday’s
law. Consequently both fields were present simultaneously in the brain in the
studies involving application of magnetic fields (Figs. 7.16 and 7.20). To determine
whether the electric field alone could explain the occurrence of the brain potentials



7 Analysis of Brain Recurrence 239

Fig. 7.19 Magnetosensory evoked potentials from indicated electrode derivations in 15 subjects.
Column heads indicate conditions of analysis. Effects in R(t) and D(t) are shown in red and green,
respectively. X, MEPs not detected. Dashes indicate conditions not analyzed (unnecessary because
the EPs had already been detected). PFW, family-wise error. The stimulus was applied coronally
to subjects S1–S10, and sagittally to subjects S11–S15 [32]

detected using ABR, we repeated the experiments, using an external electric field
that produced an internal electric field but no magnetic field. The results obtained
using electric fields of 27–430 V/m were identical to the results seen when magnetic
fields were applied [35].

Our observation that electric fields as low as 27 V/m triggered EP that could
be detected by ABR was particularly surprising because 27 V/m was roughly
equivalent to the electric field induced by a magnetic field of about 10 mG, which
is ubiquitous in the general environment. We confirmed this result by performing
additional studies using 10 and 50 mG, and EPs were again observed (Fig. 7.21)
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Fig. 7.20 Transduction of weak electromagnetic fields (EMFs) [33]. (a) Proposed EMF receptor;
the rate of change of the applied magnetic field induces an electric field (E) that produces a force
(F) on charged glycoproteins attached to a channel gate. (b) Single channel current from a voltage-
sensitive channel in an electroreceptor cell in Kryptopterus bicirrhis (an electrosensitive species of
catfish), indicating that the channel can open or close in about 0.2 ms. (c) Rise- and fall-times of
the DC magnetic stimulus. Experimental set-up shown in Fig. 7.16

[36]. As expected, the EPs were manifested in %R(t) and %D(t) as both increases
and decreases in determinism. No known method of EEG analysis other than ABR
can detect this kind of dynamical change.

ABR was also capable of evidencing specific neurotransmission processes in
the brain (Fig. 7.22). The hypothesis considered was that EMF detection involved
synapses in the trigeminal nucleus that projected to the thalamus via glutamate-
dependent pathways. If so, an anesthetic agent that antagonized glutamate neu-
rotransmission would be expected to degrade EMF-evoked potentials (EEPs). We
tested the hypothesis using ketamine which blocks glutamate receptors and xylazine
which does not do so. EEGs of rats were examined using ABR to observe EEPs in
the presence and absence of ketamine and xylazine anesthesia. EEPs were observed
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Fig. 7.21 Relative magnitude (M) of each evoked potential (expressed in percent) from each
subject as determined by recurrence analysis. (a, b) Onset and offset responses, respectively. For
each potential, M D 100(E � C)/0.5(E C C), where E was the average of the recurrence variable
(%R or %D) over the statistically significant latency interval, and C was the corresponding average
in the control epoch. Where necessary, points were jittered to facilitate resolution. Values greater
than 100 % are shown as 100 % [36]

Fig. 7.22 Hypothesis regarding synaptic processes responsible for the afferent signal produced
by EMF detection [37]. The afferent signal generated by EMF transduction triggers glutamate-
mediated (glu) neurotransmission in the trigeminal nucleus leading to thalamic projection of the
signal

in rats under xylazine anesthesia, but not when ketamine was used, indicating
that the afferent signal triggered by transduction of EMFs was likely mediated by
glutamate [37].

7.4.7 Cell-Phone Effects on the Brain

Questions have been raised concerning whether the electromagnetic fields emitted
by cell phones could affect brain electrical activity, thereby raising the possibility
that the field could ultimately lead to brain cancer or other diseases. Cell phones
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emit a complicated temporal array of electromagnetic, acoustic, thermal, and tactile
stimuli, any one of which might be responsible for effects on brain electrical activity
that might be observed in association with cell-phone use. Thus the problem of
determining whether cell-phone EMFs affect the brain requires a showing that brain
activity is affected when only an EMF stimulus is presented, which obviates use of
an actual cell phone in controlled studies.

Cell phones generate narrow pulses of high-frequency radiation that are formed
by current pulses from the phone’s battery. We knew that the rise- and fall-times of
the pulses were within the range detectable by the nervous system [34], and that
the physical process which coupled the applied magnetic field to the brain was
the induced electric field generated by the rate of change of the magnetic field
(Faraday’s law) [35]. There was a high a priori likelihood that the brain detected
the cell-phone magnetic pulses because the rate of change of the pulses produced
an extraordinarily high electric field, far greater than that induced by the 60-Hz
fields [36].

The question whether a single cell-phone pulse could be detected by the brain was
addressed by applying simulated pulses in a series of independent trials, and using
ABR to evaluate whether the pulses produced EPs (Fig. 7.22). Evoked potentials
due to just a single cell-phone pulse were demonstrated in 18 of 20 subjects [38].
The pulse rate of a typical cell phone is 216 Hz. Consequently, the results of the
study implied that 216 EPs were produced each second in the brain of a typical cell-
phone user. The potential public-health implications remain to be assessed, but the
salient point here is that the potential health problem could not have been detected
except for ABR.

A critically important property of recurrence analysis is its applicability to any
time series. A broad range of data manipulations may therefore be performed on
the original time series or even on the computed recurrence time series, assuming
that proper controls are included in the process. The possible changes include any
systematic modification of the data such that features which do not contribute to
recurrence-based discrimination between groups being compared are minimized,
thereby increasing the sensitivity of the analysis (more likely that the effects sought
will be resolved), alpha filtering for example (Fig. 7.19).

As an example of increased sensitivity based on changes in both the EEG and
recurrence time series, consider a study of the effect of the high-frequency field
produced by cell phones on brain electrical activity [39]. The internal antenna in
a cell phone was disconnected and replaced with an external antenna positioned
directly above the head of a rabbit. The antenna was energized for 2 s, with a 5-s
inter-stimulus period (N � 60 7-s trials); the last 2 s of each trial served as the control
(Fig. 7.23). Both %R and %D were computed over a 300-ms window, centered
at 250 ms from the beginning of the stimulus epoch. During preliminary studies
involving one rabbit, the EEG and the recurrence time series were systematically
altered with the goal of finding conditions of analysis that yielded statistically
significant differences between the E and C epochs (Fig. 7.23). When the EEG was
digitally filtered to remove 3, 4, and 8–12 Hz, and only 85 % of the attractor volume
was included in the E–C comparisons, both %R and %D were significantly different
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Fig. 7.23 Schematic representation of the experimental system. The detail shows the location of
the electroencephalogram (EEG) electrodes relative to the head antenna [39]

(P < 0.05). The data-conditioning procedures were then prospectively applied to
nine additional rabbits and both recurrence variables were shown to be consistently
altered during the exposure epochs [39].

The study demonstrated that changes in brain electrical activity associated with
specific external conditions were detected more efficiently when preliminary steps
were taken to precondition both the original time series and the recurrence time
series to minimize signal characteristics that did not contribute to discrimination
between the experimental and control data.

7.4.8 Detecting the Presence Effect

Another experimental question that can be addressed using ABR that previously
could not be considered because of the absence of a suitable method for quantifying
aperiodicity in the EEG is depicted in Fig. 7.24. When a stimulus is applied at
t D 0 and removed at t D 2 s, nonlinear onset and offset EPs are produced that can
be detected by recurrence analysis. With regard to the interval after the onset EP
has decayed but while the stimulus is still present (E epoch), we can ask whether
the presence of the stimulus (which entails a change in brain electrical activity)
can be detected. Surprisingly, for typical stimuli such as light or sound, there is no
objective method by which the subjective sense of detection (perception) can be
objectively verified. By calculating %R and %D during the on-time of the stimulus
but after the onset EP had decayed, objective evidence was found that confirmed
the subject’s subjective report of stimulus perception (hence confirming the change
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Fig. 7.24 Detection of changes in the EEG induced by the presence of a stimulus. EEG trial
showing the locations of the epochs used to study the physiological effect of the presence of a
stimulus (in distinction to the transient effect caused by its onset and offset). EP, evoked potential;
E, exposed; C, control [40]

Fig. 7.25 Detection of the presence effect. Light onset and offset were at t D 0 and t D 2 s,
respectively. Using nonlinear (%D, %R) and linear (Vrms) analysis, brain electrical activity at
0.7–1.7 s was compared with that at the inter-stimulus epoch (3.7–4.7 s) for each of the six
derivations from each subject. Effects in %R(t), %D(t) are shown in red and green, respectively.
The derivations for which the comparisons differed significantly (p < 0.05) are listed. The presence
effect was not detected by linear analysis (Vrms) except in S5 and S13 [40]

in brain electrical activity). The same conditions of analysis permitted an objective
verification of a change in brain electrical activity when an EMF was applied (a
subliminal stimulus for which the subjects cannot report the subjective sensation
of perception) (Fig. 7.25). Thus ABR offers the possibility to study the dynamics
of continuous detection (perceptual and non-perceptual) of external stimuli (the
presence effect).
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7.4.9 Diagnosing Multiple Sclerosis

Multiple sclerosis (MS) is an immune-system-mediated disease that degrades
brain structure, leading to serious clinical consequences. We hypothesized that the
neuronal networks involved in attention to stimuli onset and/or offset would be
affected by the presence of MS, and that the effect could be detected by ABR. An
onset response to an EMF stimulus occurred in only 27 % of a group of MS patients
studied, compared with 90 % in the control group (Fig. 7.26). Further, ABR analysis
of the baseline EEG in both groups provided additional evidence that the two groups
could be distinguished; mean %R was 30 % greater in the MS group, and %D was
15 % greater [42]. In principle, EEG analysis could provide the basis of a functional
method for detecting organ-level changes in brain activity associated with MS even
before the changes were detected by imaging brain structure.

7.4.10 Applications in Sleep Medicine

Human sleep is commonly studied by analyzing simultaneously digitized signals
from the brain, heart, skeletal muscle, and other physiological systems [43]. Sleep
macroarchitecture is characterized by examining the signals in 30-s epochs and clas-
sifying them on the basis of standardized rules into one of four mutually exclusive
stages, either rapid-eye-movement (REM) sleep or progressively deeper stages of
non-REM sleep respectively termed N1, N2, and N3; the other recognized stage
is wake after sleep onset (WASO) [44]. A graphical record of the distribution of
sleep-stage changes during overnight sleep, termed a hypnogram (Fig. 7.27, bottom
panel) provides sleep-medicine specialists an overview of the macroarchitecture
of the night’s sleep. Knowledge of sleep-stage distributions permits normal and
pathological sleep to be distinguished [46].

The concept of sleep stage is fundamental to an understanding of sleep physiol-
ogy, but has several limitations. Staging emphasizes a discontinuity of sleep, leading
to its representation as a discrete process rather than a continuous process which is
actually the case. Second, sleep staging is rule-determined [44], and application
of the rules depends on observer judgment; typical average inter-rater agreement
among experts is 80–85 %. Finally, and probably most importantly, the non-REM
stages are defined in terms of the behavior of the EEG, whereas REM sleep is
defined in terms of the coordinated behavior of three signals, only one of which
is the EEG. This fundamental difference prevented characterization of sleep stages
in terms of a single, continuous, objective, physiological variable. ABR provides a
complementary perspective on sleep characterization that is based solely on EEG
metrics [47].

For application of ABR to the sleep EEG, %R and %D were calculated second-
by-second and then averaged over 30-s epochs, resulting in approximately 900
values for a typical 8-h sleep study. The results, when viewed graphically, reveal
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Fig. 7.26 Changes in brain electrical activity induced by EMF stimuli. NE, No effect. PFW,
family-wise error. Age (years) in parentheses. Effects in %R(t), %D(t) are shown in red and green,
respectively. Stimulus was a subliminal electric field [41]

the expected ultradian macroarchitecture (2–5 relative maxima), and associated fine
structure not determinable in the standard hypnogram (Fig. 7.27, top panel). When
the individual epoch values were color coded based on the clinically-assessed sleep
stage, both %R and %D had their highest values during deep sleep (N3), lowest
values during wake, with the other stages exhibiting intermediate values (Fig. 7.27).
Thus %R and %D provided a continuous measure of sleep depth, which is a crucially
important variable in determining sleep quality. The generality of the phenomenon
was established by evaluating values of %R and %D as a function of sleep stage in
20 patients (Fig. 7.28).

The results (Fig. 7.28) suggested a possible basis for the use of ABR for diag-
nosing sleep disorders. Obstructive sleep apnea (OSA) is a disorder characterized
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Fig. 7.27 Typical percent recurrence %R(t) in the EEG (C3) from an overnight sleep study of a
patient with OSA (AHI D 9.4). Percent recurrence was calculated every second, averaged epoch-
by-epoch, and color-coded by sleep stage (hypnogram, lower panel). For clarity in presentation, the
curve was smoothed using a Savitzky–Golay filter. Gray line (%R D 11.6) indicates average value
of percent recurrence from clinically normal subjects during wake [45]. Insert shows sleep-stage-
specific average values of percent recurrence. OSA, obstructive sleep apnea. AHI, apnea–hypopnea
index (accepted clinical measure of OSA severity)

Fig. 7.28 Sleep-stage-specific percent recurrence (%R) and percent determinism (%D) in the
EEGs (C3) from 20 patients with OSA (AHI 5–30). The recurrence values were computed second-
by-second from each patient and averaged across sleep stage. Grand averages (˙SE) [45]

by periodic collapse of the upper airway during sleep, resulting in intermediate
hypoxemia, hypercarbia, and variable degrees of sleep disruption. Blood oxygen
levels are affected almost immediately by apneic events, resulting in afferent signals
to the brain that initiate appropriate compensatory responses. These autonomic
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Fig. 7.29 Effect of OSA severity on sleep-stage-specific changes in %R and %D. Both recurrence
variables were computed second-by-second from the EEG (C3), normalized by the patient’s value
during WASO, and averaged over ten patients with mild OSA (AHI 5–15) and ten patients
with moderate OSA (AHI 16–30). The N1 and N2 stages were combined. Sleep-stage-specific
means ˙ SE [45]

processes are necessarily accompanied by changes in the functional state of the
brain, compared with what the state would otherwise have been.

We expected that the changes could be detected in patients with more severe
OSA, and Fig. 7.29 demonstrates that this was indeed the case; the increases in %R
and %D during sleep (associated with deeper and hence more restful sleep) were
less in all sleep stages in patients with more severe OSA.

Individual sleep-stage-specific ABR markers for sleep depth (Fig. 7.28) cannot
presently sustain a diagnosis of a sleep disorder because of inter-patient variations.
But when the diagnostic/prognostic power associated with individual sleep-stage-
based recurrence markers is combined in the context of a suitable statistical design,
successful prediction becomes possible. For example, ABR was used to construct
four time series from an overnight EEG, namely %R(t), %D(t), and two additional
time series based on measures of their time-dependent variances. Combining the
four time series with the five sleep stages yielded a total of 20 markers. When the
markers were analyzed using linear discriminant analysis, the resulting biomarker
function was 100 % accurate in diagnosing patients with either mild or moderate
OSA [45].

7.5 Summary

The aperiodic rhythmic activity (ARA) displayed in the EEG has long been
suspected to code for specific physiological processes. A plethora of methods for
discerning the latent meaning of the EEG have been proposed, but ultimately they
were unsuccessful in yielding a general approach to the problem of interpreting the
EEG. A novel solution became possible following the development of recurrence
analysis. The techniques developed to study the dynamics of low-dimensional
systems were applied in a model-free fashion to the study of time series outputs
from high-dimensional systems, the premier example of which is the EEG generated
by the brain. Using recurrence analysis, we developed ABR, an approach that
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quantitates ARA without explicit resort to specific dynamical models, in distinction
to traditional approaches such as Fourier decomposition which assumes that the
ARA are composed of parts (individual frequencies), and in distinction to chaos
theory which assumes that the ARA arises from low-dimensional dynamical
activity. In the context of controlled statistically-based experiments that addressed
specific hypotheses, ABR was consistently useful in helping to understand brain
function. Examples of such studies were described in the preceding section.

The usefulness of ABR ultimately stems from its incorporation of an additional
analytical step in the process of analyzing the EEG. The nature of this additional step
merits reflection. Two fundamental aspects of the scientific method for determining
true cause–effect relationships (and studies of brain metabolism are no exception)
involve the concepts of averaging and replication. Identification of a cause–effect
relationship requires multiple independent observations of a phenomenon under
controlled circumstances, and the combining of the observations by means of
averaging. The point in the analysis where the averaging should be performed
is a critically important but underappreciated issue. In experiments involving
linear systems, the dependent variable is stochastic and consequently its values
can be averaged directly to form a mean that may properly be regarded as the
true characteristic behavior of the system. The replication requirement is satisfied
by showing that the mean value can be reproduced (more or less) at will. But
when the system under consideration is nonlinear, the dependent variable is not
a stochastic variable. In this case repeated measurements under the same conditions
do not yield necessarily similar values because the law of superposition does not
generally apply to nonlinear systems. As a consequence of this common behavior
of nonlinear systems, successively determined means in principle are not replicates.
Consequently direct resort to averaging for purposes of evaluating the relation
between the independent and dependent variables can have the opposite effect
of that intended—obscuring knowledge of the system’s determinism rather than
revealing it (Fig. 7.8). ABR obviates this problem by interposing a second dependent
variable (derived algorithmically from the directly-measured variable) that captures
and quantifies the experimentally-induced determinism (the difference between
the E and C groups in a controlled study) prior to averaging. Consequently each
independent trial can contribute to the requisite sensitivity needed to rationalize
the existence of an effect, because each trial adds to the ability to distinguish the
determinism of interest from background signals (signals that do not depend on the
presence of the independent variables) (Fig. 7.12). In many cases of experimentally-
induced nonlinear determinism, the scientific requirement of replication is fulfilled
by a showing that the phenomenon (as opposed to the magnitude and/or sign of a
mean) is replicable. Examples of this behavior have been discussed (Figs. 7.18 and
7.21).

The studies discussed in the previous section demonstrated ABR can be exploited
to yield a broad range of useful results in the areas of basic and translational
neuroscience.
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