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h i g h l i g h t s

� The severity of obstructive sleep apnea (OSA) was directly reflected in the sleep EEG.
� Binary classification of patients with OSA (mild or moderate) was achieved by analyzing the EEG from

one derivation.
� Analysis of brain recurrence is an effective algorithmic technique for extracting useful diagnostic

information regarding OSA from the EEG.

a b s t r a c t

Objective: To demonstrate that the severity of obstructive sleep apnea (OSA) could be predicted algorith-
mically by means of recurrence analysis of the sleep-staged electroencephalogram (EEG).
Methods: A randomly selected cohort of 20 sleep-staged patients with OSA (apnea–hypopnea index (AHI)
5–30) was divided into mild and moderate sub-cohorts (AHI 5–15, 16–30, respectively), and the sleep
EEG (C3) was analyzed using analysis of brain recurrence (ABR) (LSU cohort). Twenty distinct but related
markers for sleep depth and fragmentation were computed from four ABR variables, and a marker func-
tion capable of classifying each patient into one of the two sub-cohorts was determined by linear discrim-
inant analysis. Classification accuracy of individual patients was evaluated using area under the receiver
operator characteristics curve (AUROC). As a control procedure, 20 additional sleep-staged patients with
OSA whose polysomnographic data was obtained from an independent database were also evaluated
(SHHS cohort).
Results: On average, markers for sleep depth were reduced and those for sleep fragmentation were
increased in the patients with moderate OSA, as expected. All patients in both cohorts were correctly clas-
sified using as few as 5–6 markers.
Significance: The degree of severity of OSA was reflected in objective changes in the sleep EEG. Recurrence
analysis of the EEG potentially has uses beyond identification of the degree of OSA.
� 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

Obstructive sleep apnea (OSA) is a disorder characterized by
periodic collapse of the upper airway during sleep, resulting in
intermediate hypoxia, hypercarbia, and variable degrees of sleep
disruption. Blood oxygen levels are affected almost immediately
by apneic events, resulting in afferent signals to the brain that
initiate appropriate compensatory responses. These autonomic

processes are accompanied by changes in brain electrical activity
(Lurie, 2011; Zhang et al., 2013).

The gold-standard for assessing OSA severity is the apnea–
hypopnea index (AHI), a rule-based measure of the frequency of
the sum of both phenomena (American Academy of Sleep
Medicine, 2007). Obstructive respiratory events fragment sleep
and impair its restorative qualities (Jackson et al., 2011). Substan-
tial evidence showed that high AHI levels were associated with
serious health consequences including symptoms of wake impair-
ment and risk for cardiovascular disease (Golbidi et al., 2012).

The AHI is determined from physiological signals obtained
during laboratory or home-based polysomnography, but these
signals do not traditionally include data obtained from the
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electroencephalogram (EEG) (American Academy of Sleep
Medicine, 2007). Recently, EEG arousals have been incorporated
into the scoring of hypopneas for adults, but this is not yet univer-
sally accepted (American Academy of Sleep Medicine, 2012). Con-
sequently, information contained in the EEG typically remains
unused in the process of assessing the severity of the OSA. In prin-
ciple, the degree of severity of OSA would be expected to create
changes in brain activity, which would possibly be reflected in
measurable changes in the EEG. If so, such changes might be useful
in connection with clinical evaluation of OSA patients, for example,
by helping to classify patients into classes defined by the AHI.

Analysis of brain recurrence (ABR) is a novel method for quan-
tifying brain activity as reflected in the EEG (Carrubba et al., 2012).
We recently showed that sleep depth and sleep fragmentation
could be objectively characterized using ABR (Wang et al., 2013).
Poor quality sleep generally involves dysregulation of one or both
processes, and may result from different sleep disorders, including
OSA (Fietze et al., 1997). We were interested in the possibility that
ABR-defined markers for sleep depth and fragmentation could be
used to characterize OSA severity in individual patients, at least
to the extent that patients known to belong to one of two classes
could be reliably classified.

Our first objective was to find evidence that sleep-staging and
ABR analysis of the EEG could be combined to yield markers for
sleep depth and fragmentation that changed (on average) in the
direction consistent with the ABR model. Our second objective
was to show that the markers could be used to distinguish be-
tween patients with mild or moderate OSA. We planned to con-
clude that a classification accuracy >90% would indicate that ABR
was potentially useful for classifying OSA severity based on EEG
measurements.

2. Methods

2.1. Patients

We reviewed consecutive records of patients seen in a sleep-
medicine clinic who underwent attended overnight polysomnog-
raphy (PSG) for suspected OSA. The study cohort selected consisted
of the first 20 consecutive patients who were diagnosed with OSA
(AHI P5 events/h) (LSU cohort). Exclusion criteria included
<30 min of REM sleep (less than 4% of the PSGs examined), signif-
icant medical co-morbidities, current use of sleep-altering medica-
tions, and prior treatment for OSA. The cohort was divided into
sub-cohorts with mild (AHI 5–15 events/h) and moderate (AHI
16–30 events/h) OSA (Table 1). The PSGs were staged by two
sleep-medicine physicians, using standard rules (American
Academy of Sleep Medicine, 2007). They agreed on 92% of the
epochs; the remaining 8% were staged by consensus. Every 30-s
epoch was staged as N1, N2, N3, REM, or wake after sleep onset

(WASO). The N1 and N2 epochs were combined for statistical anal-
ysis (see below).

As a control for the potential role of the particular demograph-
ics associated with the LSU cohort, we also analyzed PSG data from
a comparable group of OSA subjects obtained from the Sleep Heart
Health Study (SHHS) (SHHS cohort), a multi-center study of the
cardiovascular and other consequences of sleep-disordered breath-
ing (Quan et al., 1997). An SHHS dataset collected in 2001 and 2003
(3295 PSGs) was searched to identify the participants for whom
the AHI had been determined based on standard rules (National
Heart Lung & Blood Institute). Our exclusion criteria (searchable
fields in the database) were participants with heart failure, emphy-
sema, chronic bronchitis, or hypertension. From the resulting
group (N = 390) we randomly selected 10 participants with AHI
of 5–15 events/h, and 10 with AHI of 16–30 events/h (SHHS cohort,
Table 1). In general, the cohort was younger, contained more
females, and had higher body mass index (BMI) measurements
compared with the LSU cohort.

All research-related procedures were approved by the institu-
tional review board for human research.

2.2. EEG measurements

The PSGs of the LSU subjects were recorded with commercial
equipment (Respironics, Alice 5, Murrysville, PA, USA), using stan-
dard digital specifications and electrode montage (O1, O2, C3, C4,
F3, F4, International 10–20 system) (Fietze et al., 1997). The EEGs
were digitized at 500 Hz, and exported as CSV files for analysis.
The EEGs of the SHHS subjects (C3, C4) were obtained as 250-Hz
EDF files and interpolated to 500 Hz for analysis. All EEGs were dig-
itally filtered to pass 0.5–35 Hz and evaluated using custom codes
in a standard numerical computing environment (Matlab, Math-
works, Natick, MA, USA).

2.3. Analysis of brain recurrence

Analysis of brain recurrence (ABR) is a nonlinear technique for
extraction of physiologically relevant information from the EEG.
The technique is based on the complexity conjecture regarding
the nature and origin of the EEG, namely that brain function is
mediated by electrical activity in localized neuronal networks
and their inter-network electrical synchronization (Carrubba
et al., 2012). In this perspective, a given EEG signal is regarded as
a delocalized measure of the instantaneous state of brain electrical
activity, and the complexity of the EEG is quantified by means of
ABR. The basic signal-processing techniques (and their special
applicability to signals having the statistical properties of EEGs)
were previously described in detail (Zbilut and Webber, 2006).
Briefly, 5-component vectors were formed that consisted of the
EEG amplitude at t and four earlier times identified by four succes-
sive lags of five points (10 ms). The sequence of all such vectors
obtainable from one second of the EEG (480 vectors, given our
choices of sampling rate, vector dimension, and number of lag
points) was interpreted to be a result of law-governed (non-ran-
dom) activity in the EEG. The amount of law-governed activity
was quantified using the variables percent recurrence (r), defined
as the percent of the 480 vectors in the path that were near other
vectors (and hence were recurrent), and percent determinism (d),
defined as the percent of the recurrent points that were adjacent
to at least one other point. Detailed analysis of these variables pro-
vides a theoretical rationale for why they quantify the amount of
law-governed activity in the EEG (Zbilut and Webber, 2006). The
Euclidean norm was used for measuring distance, and vectors were
identified as near if they were within 15% of the distance between
the two vectors that were furthest apart. These choices as well as
those for the other parameters used in the calculation were

Table 1
Characteristics of the study groups. BMI, body mass index; AHI, apnea–hypopnea
index. (Mean ± SE).

LSU cohort SHHS cohort

Mild AHI (N = 10)
(5–15 events/h)

Age (y) 47.2 ± 2.7 64.3 ± 3.1
BMI (kg/m2) 42.9 ± 2.0 31.9 ± 2.0
Male/female 2/8 6/4

Moderate AHI (N = 10)
(16–30 events/h)

Age (y) 50.3 ± 3.5 68.1 ± 2.8
BMI (kg/m2) 36.7 ± 2.3 32.1 ± 1.7
Male/female 5/5 7/3
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identified empirically and previously found to be useful for analyz-
ing the EEG (Carrubba et al., 2008, 2012, 2011).

Both variables were computed for each second of the EEG,
resulting in approximately 60 s � 60 min � 8 h = 28,800 values for
a typical eight-hour overnight EEG. The sequence of values consti-
tuted the time series r(t) and d(t), which were interpreted as inde-
pendent measures of sleep depth wherein higher values
corresponded to deeper sleep. The time-series macroarchitectures
exhibit ultradian cycles, with minimal values during wake after
sleep onset (WASO) and maximal values during N3 sleep (Carrubba
et al., 2012; Wang et al., 2013). Both variables were averaged over
the entire overnight sleep study and separately over N1/N2, N3,
REM, and WASO, and the values were used as markers of sleep
depth in a statistical procedure to predict OSA severity (see below)
(Fig. 1). We expected that the markers would be lower in patients
with higher AHI values, indicating less restorative sleep.

Markers for fragmentation in sleep depth were created by gen-
eralizing the conventional definition of EEG arousals (American
Academy of Sleep Medicine, 2007). For both r(t) and d(t), the ratio
of the mean for 3 s (one value per second) to the mean for the
preceding 10 s (ten values) was determined, and the process was
repeated using successive steps of 3 s, resulting in a time series
of approximately 9000 ratios for an overnight EEG. Whenever the
ratio increased by more than 100% for r(t) or 50% for d(t) the change
was counted as an arousal, and the hourly rate of arousals, termed
the generalized arousal index (GAI) was determined for WASO, N1/
N2, N3, and REM sleep separately, and for total sleep (TS) (all epochs
in the PSG between sleep onset and lights on except for WASO
epochs). The values during sleep were normalized by the value for
WASO and expressed as percent change. The procedure was
performed using r(t) and d(t), resulting in 5 GAI markers obtained
from r(t) and 5 from d(t) (Fig. 1, line 5). We expected that the arousal
rates would be higher in patients with more severe OSA.

Preliminary studies showed that none of the results presented
here depended on whether the EEG signal analyzed was obtained
from O1, O2, C3, C4, F3, or F4. Consequently, only results from C3
were presented here.

2.4. Statistics

Fisher’s linear discriminant analysis was used to determine the
coefficients of B, a marker function that combined the sleep
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Fig. 1. Experimental design. Each of the four time series (r(t), d(t), and their
associated GAIs) were normalized by their respective mean WASO values. The
resulting 20 markers (WASO and 4 normalized markers for each time series (line 5))
were used to create a biomarker function that discriminated between mild and
moderate OSA. Prediction accuracy was quantified using the area under the receiver
operating characteristics curve (AUROC). TS, total sleep.
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Fig. 2. Typical percent recurrence (r(t)) in the EEG (C3) from an overnight sleep study of a patient with OSA (AHI = 9.4). Percent recurrence was calculated every second,
averaged epoch-by-epoch, and color-coded by sleep stage (hypnogram, lower panel). For clarity in presentation, the curve was smoothed using a Savitzky–Golay filter. Gray
line (r = 11.6) indicates average value of percent recurrence from clinically normal subjects during wake (Wang et al., 2013). Insert shows sleep-stage-specific average values
of percent recurrence.
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markers in the way that best separated the mild (AHI 5–15) and
moderate (AHI 16–30) patients (Theodoridis and Koutroumbas,
2008). The accuracy of the predictions was assessed using area
under the receiver operating characteristics analysis (AUROC)
(Theodoridis and Koutroumbas, 2008). The reliability of B was
assessed by means of a 10-fold cross validation process in which
B was determined using 90% of the sub-cohorts, evaluated by
AUROC against the remaining 10%, and the process was repeated
ten times with differing choices for the composition of the training
and evaluation sets. The AUROC results of the ten sub-analyses
were averaged.

Tolerances shown for means were standard errors. For clarity
of presentation of the overnight r(t) and d(t), the curves were
smoothed using a cubic 119-point Savitzky–Golay filter (Sgolayfilt,
Matlab).

3. Results

Both percent recurrence (r(t)) and percent determinism (d(t))
computed from the EEGs of patients with mild or moderate OSA
(AHI 5–30 events/h) exhibited ultradian rhythms consisting of 2–
5 cycles, depending on the patient (Figs. 2 and 3). Across the entire
patient cohort, both variables were lowest during wake and N1 and
exhibited progressively higher values during deeper sleep, with the
REM values located between the N1 and N2 stages (Fig. 4), as
expected.

The rate of generalized arousals (an objective measure of EEG
fragmentation) was greatest in wake, least in N3 sleep, and inter-
mediate in the other sleep stages, regardless of whether the indices
were computed from r(t) or d(t) (Figs. 1, 5 and 6). The stage-specific
probability of a generalized arousal (for each sleep stage, the num-
ber of arousals divided by the maximum possible number)
decreased continuously with increasing sleep depth (Fig. 7).

To examine the relationship of specific ABR depth markers to
OSA severity, the study cohort was divided into mild and moderate
sub-cohorts, based on the AHI values. Because N1 sleep was rare
(2.8% of the epochs in the cohort), N1 and N2 epochs were com-
bined for sub-cohort analyses. Sleep depth was greater in all sleep
stages in the mild-OSA sub-cohort (Fig. 8), indicating that more
severe disease was associated with lighter sleep. The arousal

indices similarly depended on OSA severity; they exhibited greater
decreases during sleep in the mild-OSA sub-cohort, indicating that
the more severe disease was associated with more fragmented
sleep (Fig. 9).

Linear discriminant analysis was performed to identify combi-
nations of the markers that reliably classified individual patients
with respect to OSA severity (Fig. 1). When all combinations of
2 markers (out of 20) were evaluated, 10 combinations yielded
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Fig. 3. Typical percent determinism (d(t)) in the EEG (C3) from an overnight sleep study of a patient with OSA (AHI = 30). Percent determinism was calculated every second,
averaged epoch-by-epoch, and color-coded by sleep stage (hypnogram, lower panel). For clarity in presentation the curve was smoothed using a Savitzky–Golay filter. Gray
line (d = 55) indicates average value of percent determinism from clinically normal subjects during wake (Wang et al., 2013). Insert shows sleep-stage-specific average values
of percent determinism.
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Fig. 4. Sleep-stage-specific percent recurrence (r) and percent determinism (d) in
the EEGs (C3) from 20 patients with OSA (AHI 5–30). The recurrence values were
computed second-by-second from each patient and averaged across sleep stage.
The grand averages (±SE) for all the patients are shown.
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an AUROC of 0.75 (15 of 20 patients classified correctly). For
example, when only percent recurrence and percent determinism
in N3 sleep (rN3 and dN3, respectively) were used, 15 patients
were correctly classified (Fig. 10, left panel). When 5 markers
were included, 18 patients were correctly classified (Fig. 10, mid-
dle panel). Inclusion of an additional marker resulted in correct
classification of all patients (Fig. 10, right panel); other combina-
tions of six markers also yield 100% correct classification. Similar
results were found in the cross-validation studies (data not
presented).

To assess the generalizability of the use of ABR markers for
accurately predicting OSA severity (Fig. 10, right panel), the same
markers were used to classify the SHHS sub-cohorts, and a classi-
fication accuracy of 90% was achieved (Fig. 11a). When other com-
binations of markers were considered, 100% CA was achieved for
the SHHS sub-cohorts (Fig. 11b) (see Appendix for an example of
a biomarker function). This result was obtained consistently when
other random choices of the SHHS sub-cohorts were made (from

103 and 77 patients with mild and moderate OSA, respectively)
(data not presented).

4. Discussion

We hypothesized that the severity of OSA was reflected in
brain-activity changes, whether as cause or effect, and that such
changes could be characterized using algorithmically-determined
variables for depth and fragmentation of sleep extracted from the
EEG. ABR was used to quantify both phenomena in terms of
distinct but related markers, 10 related to sleep depth, and 10 re-
lated to sleep fragmentation. The hypothesis was tested at the level
of individual patients by asking whether the markers reliably facil-
itated prediction of whether patients in an OSA cohort (AHI 5–30)
had mild (AHI 5–15) or moderate (AHI 16–30) OSA. Various
combinations of the markers were systematically evaluated using
discriminant analysis to produce marker functions (one marker
function per combination), and the ability of each function to
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Fig. 5. Typical distribution of generalized arousals in the EEG (C3) computed using r(t) from an overnight sleep study of a patient with OSA (AHI = 8.3). The arousals (color-
coded by sleep stage) indicate the occurrence of abrupt changes in the EEG (increase of at least 100% of a 3-s average of r(t), compared with average of preceding 10 s). Pr,
stage-specific probability of an arousal in r(t) (number of generalized arousals per stage divided by the possible number). Locations of arousals were jittered to facilitate
graphical recognition.
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Fig. 6. Typical distribution of generalized arousals in the EEG (C3) computed from d(t) from an overnight sleep study of a patient with OSA (AHI = 10.7). The arousals (color-
coded by sleep stage) indicate the occurrence of abrupt changes in the EEG (increase of at least 50% of a 3-s average of d(t), compared with average of preceding 10 s). Pd,
stage-specific probability of an arousal in d(t) (number of generalized arousals per stage divided by the possible number). Locations of arousals were jittered to facilitate
graphical recognition.
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discriminate between patients with mild or moderate OSA was
evaluated using AUROC.

Only a few markers were needed to achieve good classification
accuracy (CA) (Fig. 10, left panel). Inclusion of more markers in the
discriminant analysis increased CA, and a combination of 6 mark-
ers yielded complete CA (Fig. 10, center and right panels).

Several lines of evidence reinforced the validity of the classifica-
tion success achieved using the 6-marker function. First, the
dynamical behavior of the ABR variable (Figs. 2, 3, 5 and 6) was
consistent with how they were interpreted. Depth variables were
expected to be highest in N3, lowest in wake, and to exhibit inter-
mediate values in the other sleep states. Similarly, the GAI — a
measure of the dynamic variance or fragmentation of brain states
reflected in the EEG — was expected to exhibit a particular rela-
tionship to sleep state (greatest variation in wake, least in N3).
These expected correlations were seen at the level of individual
patients (Figs. 2, 3, 5 and 6), and as an average property of the
cohort (Figs. 4 and 7). Thus the ABR variables (the source of the
discriminatory markers) had a sound physiological basis.

Second, the averages of the markers consistently differed
between the sub-cohorts in the expected directions (Figs. 8 and
9). When the contributions to discrimination between the sub-
cohorts provided by individual markers were combined, inclusion
of additional markers produced progressively better results, which
is the expected observation if the markers were related to disease
severity, as we assumed. Thus the discrimination of the markers
can be seen to arise from the summation of small differences in
individual markers that were jointly but not independently signif-
icant at P < 0.05.

Third, the marker function computed from the LSU cohort
successfully discriminated patients with OSA who were randomly
selected from the SHHS database (Fig. 11). This result was obtained
consistently when other random choices of the SHHS sub-cohorts
were made. Because the demographics of the two cohorts differed
(Table 1), the results obtained from the SHHS subjects supported
the overall conclusion that recurrence in the EEG extracted by
ABR reliably coded for OSA severity.

Fourth, links between hypoxia and brain metabolic processes
that could explain changes in brain electrical activity related to
OSA severity have been identified and could provide a mechanistic
understanding of how OSA affects the brain. One possibility is that
intermittent hypoxia selectively activates an upregulation of intra-
cellular NFjB, which is responsible for triggering multiple immu-
nologic messengers, including TNFa, IL-6, and IL-1 (Ryan et al.,
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2005). In addition, the intermittent hypoxia in patients with OSA
creates an ischemia–reperfusion intracellular environment that
promotes the development of reactive oxygen species and oxida-
tive free radicals, all of which can promote cellular destruction
(McNichols, 2009). Functional imaging has shown evidence of sub-
cortical damage in patients with OSA (Torelli et al., 2011). All of
these processes impact brain metabolism and consequently would
be expected to leave footprints in the EEG.

Finally, complete CA was achieved using any of the 6 EEG deri-
vations recorded in a standard overnight sleep study. This observa-
tion supports our basic concept that the EEG is an emergent state
property of the brain that reflects the global regulatory function
of the brain, which includes the response to hypoxia and other
physiologic stressors. ABR is based on the assumption that the
complexity of brain electrical activity during sleep arises from
brain-wide interactions among localized neuronal networks. In
this view, all outputs of the brain (any EEG signal) reflect an inte-
grated confluence of global brain activity. The redundancy of the
observations from different derivations was not evidence that
EEG signals reflected only non-localized information about brain
activity, but the redundancy was evidence that a method designed
to detect non-localized information in the EEG actually did so.

Although 20 markers were initially defined and available for
incorporation in the marker function, fewer were actually needed
to achieve complete CA. Considering all analyses performed,
including those involving the SHHS subjects, the actual number
of markers needed for 100% accuracy was 5–10, depending on
the particular cohort. Future efforts to classify OSA patients into
more than two classes might require more of the available markers
to optimize classification accuracy. Such improvements would be
part of a recursive process of development regarding which we
have only taken the first step. The potential clinical utility of this
approach, if any, is presently unknown.

In summary, patients with OSA (AHI 5–30) could be individually
classified as having mild or moderate disease (AHI 5–15, 16–30,
respectively) based solely on an algorithmic analysis of the sleep-
staged EEG from only one derivation.

Appendix. Biomarker function

Let B be the biomarker function determined by linear discrimi-
nant analysis that separates mild and moderate OSA patients in the
SHHS cohort (Fig. 11b). B = a1V1 + a2V2 + a3V3 + a4V4 + a5V5, where
V1 = rN1/N2, V2 = dWASO, V3 = dREM, V4 = GAIr in N1/N2, and V5 = GAIr

in REM. rN1/N2, dWASO, dREM, are percent recurrence and percent
determinism respectively computed for indicated sleep stage,
and the GAIr values are generalized arousal indices computed from
percent recurrence for the indicated stages. The respective coeffi-
cients a1–a5 are 0.033, �0.006, �0.010, �0.014, and �0.020. The
threshold for discrimination between the groups (chosen using
AUROC) was 0.38.
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