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a b s t r a c t

Analysis of brain recurrence (ABR) is a novel computational method that uses two variables for sleep
depth and two for sleep fragmentation to quantify temporal changes in non-random brain electrical
activity. We postulated that ABR of the sleep-staged EEG could identify an EEG signature specific for the
presence of mental health symptoms. Using the Mental Health Inventory Questionnaire (MHI-5) as
ground truth, psychological distress was assessed in a study cohort obtained from the Sleep Heart Health
Study. Subjects with MHI-5 o50 (N¼34) were matched for sex, BMI, age, and race with 34 subjects who
had MHI-5 scores 450. Sixteen ABR markers derived from the EEG were analyzed using linear
discriminant analysis to identify marker combinations that reliably classified individual subjects. A
biomarker function computed from 12 of the markers accurately classified the subjects based on their
MHI-5 scores (AUROC¼82%). Use of additional markers did not improve classification accuracy.
Subgroup analysis (20 highest and 20 lowest MHI-5 scores) improved classification accuracy
(AUROC¼89%). Biomarker values for individual subjects were significantly correlated with MHI-5 score
(r¼0.36, 0.54 for N¼68, 40, respectively). ABR of EEGs obtained during sleep successfully classified
subjects with regard to the severity of mental health symptoms, indicating that mood systems were
reflected in brain electrical activity.

& 2014 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

The relation between psychological distress and the pattern of the
electroencephalogram (EEG) recorded from distressed subjects has
been studied since the discovery of the EEG (Lemere, 1936). In major
depressive disorder (MDD), for example, many attempts were made to
identify visual features, spectral characteristics, or other linear proper-
ties of the signal that would allow identification of risk, confirm
diagnosis, permit monitoring of the effect of treatment, and/or predict
treatment response (Olbrich and Arns, 2013). Changes in absolute or
relative alpha power were probably the most frequently identified
variables associated with MDD, but not with sufficient consistency to
warrant clinical application (Knott and Lapierre, 1987; Pozzi et al.,
1995; Grin-Yatsenko et al., 2009; Jaworska et al., 2012).

Various methods based on analysis of the nonlinear dynamical
complexity in the EEG were proposed for studying mental disorders
(Bystritsky et al., 2012). Within the limitations of this perspective
(Rapp, 1994), various approaches were developed to distinguish

between the presence and absence of MDD (Olbrich and Arns,
2013) and to predict treatment efficacy (Arns et al., 2014). Similar
observations were reported for other mental disorders including
schizophrenia (Paulus and Braff, 2003) and autism (Bosl et al., 2011).

Analysis of brain recurrence (ABR) is a computational method
designed to detect and quantify deterministic temporal patterns in
the EEG (non-random brain activity) not detectable by conven-
tional EEG methods such as pattern-recognition or spectral ana-
lysis (Carrubba et al., 2012a). ABR was used to study a range of
problems in basic and clinical neuroscience (Frilot et al., 2014).
Patients with multiple sclerosis were identified using ABR (Carrubba
et al., 2010; Carrubba et al., 2012b), and it was used to create a novel
paradigm in which the concepts of sleep depth and variability could
be quantified (Carrubba et al., 2012a; Wang et al., 2013). Employing
markers based on these variables, patients with mild or moderate
obstructive sleep apnea were distinguished using the sleep-staged
EEG from a single derivation (Wang et al., 2013), illustrating the
concept that a complex physiologic disorder leaves an objectively
discernible and specific footprint on brain electrical activity.

We became interested in whether the sleep-acquired EEG could
similarly be used to classify subjects with psychological distress.
Our ultimate goal was to develop objective analytical methods to
help in the diagnosis and classification of subjects with neurocognitive
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disorders. In the present study we tested the hypothesis that sleep
depth and fragmentation markers extracted from the staged, sleep-
acquired EEG could be employed to accurately assign subjects into
classes with higher or lower levels of distress, using scores from the
Mental Health Inventory questionnaire (MHI-5) as ground truth. If the
subjects could be correctly classified, we planned to interpret the
result as an indication that psychological distress was objectively
associated with a specific type of algorithmically-determinable change
in the sleep EEG.

2. Methods

2.1. Patients

Fig. 1 shows the basic stages of the analysis. The study cohort was chosen from
the 6441 participants in the Sleep Heart Health Study (SHHS), a multi-center study
sponsored by the National Heart, Lung and Blood Institute and conducted in ten
U.S. communities to determine the cardiovascular and other consequences of sleep-
disordered breathing (Quan et al., 1997). All SHHS participants underwent over-
night polysomnography (PSG) between 1995 and 1998. The present investigation
took advantage of the EEG data in the PSG, the scores from the MHI-5, and relevant
covariate information collected during the baseline SHHS examinations.

The cohort studied was chosen from SHHS participants for whom mental health
status, age, gender, body mass index (BMI), and race were ascertained within 1 year
of polysomnography. Participants with sleep apnea, type 2 diabetes, stroke, myo-
cardial infarction, angina, heart failure, coronary angioplasty, or coronary artery
bypass graft surgery were excluded. We arbitrarily regarded a scaled MHI-5 score
less than 50 as indicating impaired mental health. The cohort was formed by
randomly choosing subjects with scores less than 50, and matching them for gender,
age (72 years), BMI (72 kg/m2), and race with subjects who had MHI-5 scores
greater than 50. When there was more than one possible choice, the subject was
chosen randomly. The two sub-cohorts were well matched on all pertinent
characteristics except for MHI-5 score (the variable used to define the sub-cohorts)
(Table 1). The low RDI scores indicated that the subjects did not have sleep apnea.
We arbitrarily chose sub-cohorts of 34 subjects, which was about half of the subjects
available in the less-than-50 group. All research-related procedures were approved
by the institutional review boards for human research at the institutions where the
data was collected.

2.2. Measure of mental health

The MHI-5 screening instrument asked “How much of the time during the last
month have you: (1) been a very nervous person; (2) felt calm and peaceful; (3) felt
downhearted and blue; (4) been a happy person; and (5) felt so down in the dumps
that nothing could cheer you up?” Each answer was scored 1–6 (subject range 5–30),
with higher scores indicating better mental health. For analysis, the total score was
linearly transformed into a variable with a range from 0 to 100. In a population-
based sample, the overall accuracy of the MHI-5 in identifying mood disorders is
88%, using a cut-off of 60 points or less (Rumph et al., 2001). In a population
of patients with HIV, the best cut-off score for major depression (84%) was 52
(Holmes, 1998).

2.3. Polysomnograms

PSGs were recorded using the Compumedics P Series system (Abbots Ford,
Victoria, Australia) (Quan et al., 1997) and were obtained from the SHHS database
(National Heart Lung & Blood Institute, 2012). Details regarding the recording
procedures were described elsewhere (Redline et al., 1998). Each PSG was about
eight hours in duration and had been divided by the original SHHS investigators
into 30-second epochs and classified into one of five mutually exclusive stages, four
stages of sleep (REM, N1, N2, N3) or the stage of wake after sleep onset (WASO). The
PSGs contained EEGs recorded from C3–M2 and C4–M1, sampled at 125 Hz, and
were provided as MAT files. For analysis, the EEGs were interpolated to 500 Hz (our
laboratory standard sampling frequency for the EEG) using a standard algorithm
(Matlab, Mathworks, Natick, MA, USA), filtered using an FFT digital filter to pass
0.5–35 Hz, and evaluated by means of custom codes in a standard numerical
computing environment (Matlab). We chose 35 Hz as the cut-off because we had
previously determined that it produced the best balance between capturing
essentially all the energy in the EEG while providing good protection against
common artifacts that appear in the sleep EEG above 35 Hz. The EEGs from both
derivations were analyzed, but only the results from C3–M2 are presented here
because the C4–M1 results were essentially identical.

2.4. Analysis of brain recurrence

Analysis of brain recurrence (ABR) is a nonlinear technique for extracting
information from the EEG. The basic idea is that although brain electrical activity
appears irregular, it actually exhibits recurrent patterns that can be detected and
quantified, thereby permitting evaluation of the relation between the recurrences
and behavioral or clinical observations. ABR is based on the conjecture that brain
function is mediated by electrical activity in localized neuronal networks and their
inter-network electrical synchronization (Carrubba et al., 2012a). In this perspec-
tive, an EEG from any derivation is regarded as a delocalized measure of the
instantaneous electrical state of the brain, and the extent of the law-governed (as
opposed to random) behavior contained in the EEG resulting from the network
activity is quantified using ABR. The basic signal-processing techniques and their
applicability to model-independent analyses of nonstationary signals like EEGs
were previously described (Zbilut and Webber, 2006). Briefly, 5-component vectors
(points in a five-dimensional mathematical hyperspace) were formed that con-
sisted of the EEG amplitude at t and four earlier times identified by four successive
lags of five points (10 ms). The sequence in hyperspace of all such vectors
obtainable from one second of the EEG (480 vectors, given our choices of sampling
rate, vector dimension, and delay time) was interpreted as a path that was
determined by law-governed (non-random) activity in the brain. The amount of
such activity was quantified using the variables percent recurrence (r), defined as
the percent of the 480 vectors in the path that were near other vectors (and hence
were recurrent), and percent determinism (d), defined as the percent of the
recurrent points that were adjacent to at least one other recurrent point. Detailed
analysis of these variables provides a theoretical rationale for why they quantify
the amount of law-governed activity in the EEG (Zbilut and Webber, 2006; Frilot
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Fig. 1. Experimental design.

Table 1
Characteristics of the study cohort. BMI, body mass index. MHI-5, Mental Health
Inventory-5. Mean7SE. C, Caucasian. RDI, Respiratory Disturbance Index.

MHI-5o50 MHI-5450

N 34 34
Race (C/non-C) 29/5 29/5
Age (years) 58.672.3 58.772.3
Male/Female 12/22 12/22
BMI (kg/m2) 25.670.6 25.970.6
RDI 1.670.2 1.370.2
MHI-5 40.571.4 78.472.1
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et al., 2014). The Euclidean norm was used for measuring distance, and vectors
were identified as near if they were within 15% of the distance between the two
vectors that were furthest apart (threshold radius). These choices as well as those
for the delay time (10 ms), embedding dimension (five), and threshold radius
(15%) were identified on the basis of previous experience and found to be useful
for analyzing the vigilant and sleep EEG (Carrubba et al., 2012a; Frilot et al., 2014).

Both r and dwere computed for each second of the EEG, resulting in approximately
60 s#60min#8 h¼28,800 values for a typical eight-hour overnight EEG. The con-
tinuous series of those values, r(t) and d(t), were interpreted as independent measures
of sleep depth wherein lower values were associated with wake or light sleep and
higher values with deeper sleep (Carrubba et al., 2012a). For statistical evaluations, in
each subject the variables were averaged epoch-by-epoch and then stage-by-stage over
the entire overnight sleep study, resulting in 8 markers for sleep depth (Fig. 1).

Markers for fragmentation in sleep depth were created by generalizing the
conventional definition of EEG arousals (American Academy of Sleep Medicine,
2007). For both r(t) and d(t), the ratio of the mean over 3 s (one value per second)
to the mean of the preceding 10 s (ten values) was determined, and the process was
repeated using successive steps of 3 s, resulting in a time series of approximately
9000 ratios for an overnight EEG. Whenever the ratio increased by more than 100%
for r(t) or 50% for d(t) the change was counted as an arousal, and the hourly rate of
arousals, termed the generalized arousal index (GAI) was determined for each stage.
The procedure was performed using r(t) and d(t) which, after averaging, resulted in
8 GAI markers for sleep fragmentation (4 from r(t) and 4 from d(t)). N1 epochs
occurred only rarely (o3% of the $57,000 epochs in the study), consequently they
were combined with N2 for discriminant analysis and descriptive statistics.

2.5. Discriminant analysis

Fisher's linear discriminant analysis was used to determine the coefficients of
biomarker functions that combined the sleep markers in the way that best separated the
subjects into groups with MHI-5 scores that were below or above 50 (Theodoridis and
Koutroumbas, 2008). Classification accuracy was assessed using area under the receiver
operating characteristics curve (AUROC) (Matlab) (Theodoridis and Koutroumbas, 2008).
The reliability of the biomarker function was assessed by means of a 10-fold cross
validation process in which a biomarker function was determined using 90% of the
subjects and then used to classify the remaining 10% (Baek et al., 2009). The process was
repeated ten times choosing a different testing set in each instance, and the overall
results were summed to determine accuracy. A surrogate-data method was used to
evaluate the statistical significance of the AUROC values (Hesterberg et al., 2003). Pair-
wise means tests were performed using the t-test. The results of surrogate analyses of
the AUROC results were evaluated by directly determining the probability that the
observed result was due to chance. The tolerances shown for the means were standard
errors.

3. Results

3.1. Cohort characteristics

Percent recurrence (r) and percent determinism (d) (independent
measures of sleep depth) (Wang et al., 2013) exhibited ultradian
rhythms of 2–5 cycles (Fig. 2a). As expected, sleep-stage-specific
mean values were typically lowest during WASO and progressively
greater during the NREM stages, with REM between N1 and N2. The
rates of generalized arousals (measures of sleep fragmentation) also
depended on sleep stage (Fig. 2b). Arousals were most likely during
WASO, least likely during N3, and had intermediate probabilities
during the other sleep stages.

3.2. Subject-level characteristics

The hypothesis that the stage-specific markers could be combined
statistically to classify individual subjects was tested using discrimi-
nant analysis of 16 ABR markers extracted from the C3 EEG and
AUROC to assess classification accuracy. Initially all possible combi-
nations of 2 markers were considered, but all resulting AUROC values
were o70%. When all possible combinations of 3–12 markers were
systematically evaluated, progressively greater AUROC values were
obtained up to 82%, which occurred for one of the 1820 possible
combinations of 12 markers. All combinations of 13–16 markers
yielded an AUROC r82%, and were therefore not considered further.

The best AUROC results for combinations of 4, 6, 8, 10, and 12
markers are shown in Table 2. For the cases of 4 and 6 markers, only

markers for sleep fragmentationwere identified by the discriminant
analysis as necessary for optimal subject classification. For cases
where more than 6 markers were considered, the discriminant
algorithm also incorporated sleep-depth markers for optimal results
(Table 2). When discriminant analyses were performed using only
one stage of sleep, the respective AUROC results using only WASO,
N1/N2, N3, or REM were 66%, 58%, 64%, and 58%, indicating that
multi-stage markers were needed for accurate classification.

To evaluate the possibility that the AUROC values were due to
chance rather than subject classification based on MHI-5 scores,
surrogate sampling distributions were created by randomizing the
higher/lower classification of each subject and calculating the
resulting AUROC. A total of 105 randomizations were performed,
and in each case (Table 2) AUROC was significant (Po0.05).

The likelihood that the results (Table 2) would generalize to
other samples of subjects was considered by means of cross-
validation analyses. The resulting AUROC values were 70–72%, and
the correlation coefficients for the association between the value
of the biomarker function and the MHI-5 score was 0.23–0.36,
depending on the number of markers used in the analyses.

To assess the effect of the sub-cohort distributions of MHI-5
scores on the results for accuracy and biomarker correlation, the
sub-cohorts were restricted to subjects with the 20 highest and
the 20 lowest MHI-5 scores. Both AUROC and the correlation
coefficient increased notably in the partial sub-cohorts (Fig. 3).

3.3. Sub-cohort comparisons

Mean normalized (with respect to WASO) stage-specific sleep
depth and general arousal indices did not differ between the sub-
cohorts (Figs. 4 and 5).

WASO
N1
N2
N3
REM

Time (hours)

0

5

10

15

20

25

30

r
(%)

1 2 3 4 5 6 70

0 1 2 3 4 5 6 7 

WASO

REM

N1

N2

N3

WASO
REM
N1
N2
N3

Time (hours)

Fig. 2. Typical time-dependent and sleep-stage average results for recurrence
calculations based on an overnight EEG from C3 of a study subject (MHI-5¼76).
(a) Time series for percent recurrence (r). Bar graph shows the sleep-stage-specific
mean values. (b) Distribution of generalized arousals computed using r shown in a).
Locations of arousals were jittered to facilitate graphical recognition. Pr, a posteriori
stage-specific probability of an arousal (number of arousals in a given stage divided
by the maximum possible number). WASO, wake after sleep onset.
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4. Discussion

When applied to the sleep-acquired, staged EEG, ABR yielded
delocalized variables that tracked traditional stage-related con-
cepts of sleep depth and fragmentation. We postulated that ABR-
derived markers could be combined statistically to identify a
signature specific for the presence of mental health symptoms.
The assumption was tested by ascertaining whether subjects could
be reliably classified according to symptom severity, as assessed
using MHI-5 scores.

Using 12 ABR markers, the specific identity of which was deter-
mined from an a priori group of 16 markers by means of discriminant
analysis, we classified 68 subjects into either MHI-5o50 or MHI-
5450 groups, with an AUROC of 82% (Table 2), corresponding to a
sensitivity and specificity of 79% and 77%, respectively (Fig. 3a). The
significance of the AUROC (Po0.05) was established by means of
a standard surrogate analysis. The biomarker function had a dose-

dependent relationship with symptom severity (Figs. 3a, r¼0.36,
Po0.05). Moreover, when subjects with mid-range MHI-5 scores
were removed, subjects with intact mental health could be differ-
entiated from those with more severe affective symptoms with even
more precision (Fig. 3b, AUROC¼89%, r¼0.56, Po0.05). We interpret
the overall results to mean that symptoms of psychological distress
could be objectively detected in the EEG using sleep-stage-specific
recurrence markers from each subject.

Mean normalized (with respect to WASO) stage-specific sleep
depth was marginally greater in all sleep stages in the sub-cohort
with lower MHI-5 scores, but none of the individual comparisons
were pair-wise significant (P40.05) (Fig. 4). Similarly, mean stage-
specific general arousal indices differed insignificantly between
the sub-cohorts (Fig. 5). Both results were expected because no
individual marker was sufficiently impacted by the presence of
mental disorder to permit a statistically determinable impact on
the group mean. Discriminant analysis, in contrast, focused on
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Table 2
Relation between number of markers (N) and the highest AUROC computed by considering all possible combinations of N markers (shown in parentheses). X's indicate the
specific markers that contributed to the biomarker function which yielded the indicated AUROC. Use of N412 produced no further increase in AUROC.

N Highest AUROC
(%)

GAIr in
WASO

GAIr in N1/
N2

GAId in
WASO

GAId in N1/
N2

GAIr in
REM

GAId in
N3

r in N1/
N2

d in N1/
N2

r in
N3

d in
N3

d in
WASO

d in
REM

4 (1820) 74 x x x x
6 (8008) 77 x x x x x x
8 (12870) 79 x x x x x x x x

10 (8008) 81 x x x x x x x x x x
12 (1820) 82 x x x x x x x x x x x x
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assessing an impact at the individual level and achieved this
objective by integrating many relatively small impacts of mental
disorder on different markers.

There are many reports of a relationship between nonlinear
dynamics and health. In general, increased order (thought to impair
the body's adaptability) is associated with disease (Goldberger et al.,
2002). Abnormal dynamics have previously been reported in con-
nection with mental disorders, including depression (Gottschalk
et al., 1995; Linkenkaer-Hansen et al., 2005; Carlino et al., 2012).
Our method extends these ideas to the level of the individual subject.

Limitations of the study include the retrospective design, the
particular choices of delay time and other ABR parameters, and the
relative crudity of the neurobehavioral assessment instrument.
Archived retrospective data inherently contains some unintended
heterogeneity in the study cohort, which limits the applicability of
the results. To fully understand what ABR measures (and how it is
captured by differing choices of ABR parameters), the neural
activity to which it is related must be understood. We did not
address that issue. Our aimwas to show that ABR reliably classified
subjects based on the MHI-5, the implication of which would be
that ABR actually captured meaningful neural activity. In addition,
the non-specificity of the mental disorder reflected in the MHI-5 is
well recognized. Our intention was to classify subjects as either
healthy or with any kind of mental disorder. A more specific
assessment tool, for depression as an example, would probably
allow refinement of the biomarker approach, resulting in better
classification precision.

Negative affective symptoms accompany numerous patholo-
gies, including sleep deprivation (Mustahsan et al., 2013), sub-
stance abuse (Gleason et al., 2013), the psychological burden of
caring for a sick child (Gallagher and Hannigan, 2013), chronic pain

(Iliffe et al., 2009), heart disease (Garfield et al., 2014), and primary
mental illnesses. We did not address the underlying mechanism
for such negative symptoms, but instead focused on whether they
could be reliably identified by distinguishing those with poor self-
reported mental health from those without such problems, using
only one sleep-acquired EEG signal. Our results were a proof-of-
concept, suggesting that ABR of the sleep-acquired, staged EEG is a
practical and incrementally valuable data source for identifying
the presence of impaired mental health. Diagnostic and prognostic
information about mental illness may be hiding in plain sight.

5. Conclusion

Based on algorithmic analyses of single-derivation staged,
sleep-acquired EEGs, subjects in a population-based sample of
adults could be correctly classified at a respectable accuracy level
regarding the presence or absence of negative neurobehavioral
symptoms, using the MHI-5 score as ground truth.
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