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Abstract 
The strong associations of rapid eye movement (REM) sleep with dreaming and memory consolidation imply the existence of 
REM-specific brain electrical activity. notwithstanding the visual similarity of the electroencephalograms (EEGs) in REM and 
wake states. Our goal was to detect REM sleep by means of algorithmic analysis of the EEG. We postulated that novel depth 
and fragmentation variables, defined in relation to temporal changes in the signal (recurrences). could be statistically combined 
to allow disambiguation of REM epochs. The cohorts studied were consecutive patients with obstructive sleep apnea (OSA) 
recruited from a sleep medicine clinic, and clinically normal participants selected randomly from a national database (N = 20 
in each cohort). Individual discriminant analyses were performed, for each subject based on 4 recurrence biomarkers. and 
used to classify every 30-second epoch in the subject's overnight polysomnogram as REM or NotREM (wake or any non-REM 
sleep stage), using standard clinical staging as ground truth. The primary outcome variable was the accuracy of algorithmic 
REM classification. Average accuracies of 90% and 87% (initial and cross-validation analyses) were achieved in the OSA cohort; 
corresponding results in the normal cohort were 87% and 85%. Analysis of brain recurrence allowed identification of REM sleep, 
disambiguated from wake and all other stages, using only a single EEG lead, in subjects with or without OSA. 
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Introduction 

Sleep is conventionally classified into 4 stages, REM, and 3 
non-REM (NREM) stages, Nl, N2, and N3. 1 This staging con­
struct recognizes that REM and NREM sleep differ in funda­
mentally important ways. Examples include the physiologic 
response to stressors like hypercarbia or hypoxia,2 seizure sus­
ceptibility,3 and propensity for abnormal behaviors during 
sleep such as NREM versus REM parasomnias. 

The NREM stages are defmed exclusively by features of the 
EEG, including the morphology, frequency, amplitude, and 
location of the signal. The REM stage, in contrast, requires 
measurement of the electro-oculogram and the chin electro­
myogram to enable scoring because the EEGs in REM and 
wake are so similar. Even so, brain activity during REM is 
known to exhibit a unique dynamic interplay between pontine, 
thalamic, and neocortical networks,<~-6 and REM has strong 
functional associations with both dreaming and specific types 
of memory consolidation? Our guiding thought was that REM 
should be directly detectable in the EEG, but a method for 
doing so has not been demonstrated. 

Analysis of brain recurrence (ABR) is a phase-space-based 
analytical method designed to detect and quantify temporal 
patterns in the EEG (nonrandom brain activity) that are not 
characterized by the conventional EEG features.8 Using a class 
of ABR variables that measured what we termed sleep depth, 
the 3 stages of non-REM sleep were reliably distinguished 
from one another.9 However, the values of the depth variables 
during epochs of REM sleep overlapped those of epochs that 
were staged wake, Nl, or N2, thereby obviating the possibility 
of detecting clinically staged REM in the EEG using only depth 
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variables. We subsequently defined a sleep fragmentation class 
of variables that measured depth, and presented evidence that 
in at least one clinical context the fragmentation variables 
changed in the manner expected as a result of treatment.10

Our first aim was to determine whether the variables could 
be combined to allow detection of REM epochs. Our second 
aim was to evaluate the generalizability of the detection proce-
dure, by analyzing 2 independent groups of subjects.

Methods

Patients

We reviewed consecutive records of patients, seen in a sleep 
medicine clinic, who underwent attended overnight polysom-
nography (PSG) for suspected OSA The study cohort consisted 
of the first 20 consecutive patients with OSA (apnea-hypopnea 
index (AHI) ≥5 events per hour) (Louisiana State University 
[LSU] cohort). Exclusion criteria included <30 minutes of 
REM sleep (<4% of the PSGs examined), significant medical 
comorbidities, current use of sleep-altering medications, and 
prior treatment for OSA.

Each 30-second epoch was classified by 2 sleep medicine 
physicians using standard rules1 into N1, N2, N3, REM, or 
wake after sleep onset (WASO). The experts initially agreed on 
more than 90% of the epochs, and the remaining epochs were 
staged by consensus regarding application of the staging rules. 
For illustrative purposes N1 (<3% of all epochs) and N2 stages 
were combined. For hypothesis testing, the NREM and WASO 
epochs were combined, resulting in 2 classes of epochs, REM 
and NotREM.

To evaluate the possibility that the presence of OSA could 
affect algorithmic detection of REM, we also studied subjects 
without OSA, the PSGs of whom were obtained from the Sleep 
Heart Health Study (SHHS cohort), a multicenter study of the 
cardiovascular and other consequences of sleep-disordered 
breathing.11,12 An SHHS data set, collected in 2001 and 2003 
(3295 PSGs), was searched to identify all participants who had 
an AHI determination based on standard rules; those with heart 
failure, emphysema, chronic bronchitis, or hypertension were 
excluded. From that data set (N = 390) we randomly selected 
20 participants who had an AHI <5 events per hour (no OSA). 
Characteristics of the cohorts are listed in Table 1.

All research-related procedures were approved by the insti-
tutional review board for human research.

EEG Measurements

The PSGs of the LSU cohort were recorded using commercial 
equipment (Respironics, Alice 5, Murrysville, PA) and stan-
dard EEG derivations (O1, O2, C3, C4, F3, F4, international 
10-20 system).13 The EEGs were digitized at 500 Hz and 
exported as CSV files for analysis. The EEGs of the SHHS 
cohort (C3, C4) were obtained as 250-Hz EDF files and inter-
polated to 500 Hz to permit comparisons of the calculated 
results with those from the LSU cohort. All EEGs were digi-
tally filtered to pass 0.5 to 35 Hz and evaluated using custom 
codes in a standard numerical computing environment (Matlab, 
Mathworks, Natick, MA).

Analysis of Brain Recurrence

Analysis of brain recurrence (ABR) is based on the assump-
tions that cognition and physiological regulation are mediated 
by connectivity among spatially distributed neuronal networks 
(complexity conjecture),14 and that the scalp EEG is a global 
delocalized measure of the instantaneous state of network con-
nectivity. ABR quantifies patterns (recurrences) inherent in the 
EEG that are normally unapparent, but that are demonstrable 
using the technique of phase-space embedding. ABR differs 
fundamentally from subjective methods of analyzing the EEG, 
such as visual pattern recognition, and from objective methods 
like spectral analysis, which presuppose that the EEG is com-
posed of parts (frequencies). Brain network connectivity is 
highest in wakefulness, and lower (ie, more deterministic, cor-
responding to higher values of recurrence) during sleep.9,15 
Thus ABR effectively measures the change in connectivity 
(increase in deterministic {nonrandom} activity) that occurs 
during sleep.9

The basic signal-processing steps of ABR, and their special 
applicability to signals having the statistical properties of 
EEGs, were previously described.16 Briefly, groupings of 5 
points in the EEG (called vectors) were formed that consisted 
of the EEG amplitude at time t and at 4 earlier times identified 
by 4 successive lags of 5 points (10 ms because the EEG was 
sampled at 500 Hz). The particular sequence of all such vectors 
obtainable from one second of the EEG (480 vectors) was 
assumed to result from deterministic activity in the EEG. The 
amount of the activity was quantified using the variables per-
cent recurrence (r), defined as the percent of the 480 vectors in 
the path that were near other vectors (and hence were recur-
rent), and percent determinism (d), defined as the percent of the 
recurrent points that were adjacent to at least one other point. 
Detailed analysis of these variables provides a theoretical ratio-
nale for why they quantify the amount of deterministic activity 
in the EEG.16 Applications of the variables in various areas of 
basic and clinical neuroscience are discussed elsewhere.8 The 
Euclidean norm was used for measuring distance, and vectors 

Table 1.  Characteristics of the Study Groups.

LSU Cohort SHHS Cohort

N 20 20
Age in years, mean ± SD 49.1 ± 9.8 62.1 ± 9.2
BMI in kg/m2, mean ± SD 39.8 ± 7.6 27.6 ± 4.6
Male/female 8/12 7/13
AHI in events per hour, 

mean ± SD
16.6 ± 8.9 2.0 ± 1.4

Abbreviations: BMI, body mass index; AHI, apnea-hypopnea index; LSU, 
Louisiana State University; SHHS, Sleep Heart Health Study.
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were identified as near if they were within 15% of the distance 
between the two vectors that were furthest apart. These choices 
as well as those for the other parameters used in the calculation 
were identified empirically and previously found to be useful 
for analyzing the EEG.

Both variables were computed for each second of the EEG, 
resulting in approximately 60 seconds × 60 minutes × 8 hours 
= 28,800 values for a typical 8-hour overnight EEG. Taken in 
temporal order, the values constituted the time series r(t) and 
d(t), which were interpreted as independent measures of sleep 
depth wherein higher values corresponded to deeper sleep.9,10 
Epoch-level biomarkers were created by averaging r(t) and d(t) 
epoch by epoch, resulting in about 900 pairs of depth markers 
for each staged epoch.

REM sleep comprises phasic and tonic activity, a feature that 
suggested to us the possibility that the accuracy of computer-
based identification of REM sleep could be improved by adding 
a biomarker for deterministic variability. Such markers were 
created by generalizing the conventional definition of EEG 
arousals.1 For r(t) and for d(t), the ratio of the mean for 3 sec-
onds (1 value per second) to the mean of the preceding 10 sec-
onds (10 values) was determined, and the process was repeated 
using successive steps of 3 seconds, resulting in a time series of 
approximately 9000 ratios for an overnight EEG. Whenever the 
ratio increased by more than 100% for r(t) or 50% for d(t) (lev-
els determined empirically during preliminary studies), the 
change was counted as a generalized arousal (GA). The term 
denotes an identifiable shift in generalized connectivity during 
the brain state being studied. GA indices for each depth marker 
were computed for each staged epoch by counting the number 
of arousals in the epoch (expressed as number of events per 
hour). Thus, 2 depth and 2 arousal biomarkers were determined 
for each staged epoch. The epochs were divided into REM and 
NotREM classes for discriminant analysis (Figure 1).

Statistics

For each subject, Fisher’s linear discriminant analysis was used 
to determine the coefficients of a linear biomarker function that 
combined the four sleep biomarkers in the way that best sepa-
rated REM and NotREM epochs for that subject.17 The reli-
ability of the biomarker function (the extent to which it 
correctly classified epochs that were not part of the data set 
used to create the function) was assessed by means of 10-fold 
cross validation. To implement that process, the biomarker 
function was determined using 90% of the subjects in the 
cohort, and the resulting function was used to classify the 
remaining 10%. The procedure was repeated ten times with dif-
fering choices for the composition of the training and evalua-
tion sets, and the results of the 10 subanalyses were averaged. 
Classification accuracy was calculated as the ratio of true posi-
tive and true negative classifications to the total number of 
epochs, expressed as a percent.

For clarity of presentation of the overnight r(t) and d(t), the 
curves were smoothed using a cubic 119-point Savitzky-Golay 
filter (Sgolayfilt, Matlab).

Results

Percent recurrence (r(t)) and percent determinism (d(t)) com-
puted from the EEGs of OSA patients exhibited ultradian 
rhythms consisting of 2 to 5 cycles, as expected9,10; a typical 
result for r(t) is shown in Figure 2A. The values were lowest 
during wake and N1 and progressively higher during deeper 
sleep. The REM values were commonly located between N1 
and N2, as noted in prior work. Generalized arousals occurred 
most often during WASO and REM, and were essentially 
absent during N3 (Figure 2B).

Using the 4 ABR biomarkers, the results of independent dis-
criminant analyses for the individual patients in the LSU cohort 
showed that algorithmic determination of REM epochs matched 
ground truth with accuracies of 70% to 99% (90% on average); 
comparable results were obtained during cross-validation (79% 
to 96%, 87% on average; Table 2).

To evaluate the possibility that the ability to reliably identify 
REM epochs using ABR biomarkers was restricted to OSA 
patients, we performed a parallel analysis on 20 clinically 
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Figure 1.  Experimental design. Each of the time series, (r(t), d(t)), 
and their associated general arousal (GA) series were computed 
from the EEG, resulting in 4 markers for each epoch. Epochs were 
divided into rapid eye movement (REM) and NotREM classes, which 
were used to train a biomarker function that could classify the 
individual epochs into 1 of the 2 groups.
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Figure 2. Typical results for percentage recurrence (r(t)) (A) and general arousal index (GAl) (B) computed from r(t) (GAl) for an 
obstructive sleep apnea (OSA) patient (LSU cohort). Percentage recurrence was calculated every second from the C3 derivation, averaged 
epoch-by-epoch and color-coded by sleep stage. The arousals observed in r(t) were color-coded to indicate the stage in which they 
occurred. Stage-averaged values are given in the inserts. P,. post hoc probability of an arousal (patient I in Table 2). 

T able 2. Algorithmic Determination of REM Sleep in OSA Patients (LSU Cohort). 

Ground Truth ABR Calculated ABR Result GT-ABR Agreement 

Subject REM Not REM TP FN TN FP REM NotREM Initial(%) cv (%) 

I 124 787 11 5 9 641 146 26 1 650 83 80 
2 153 776 128 24 609 168 296 633 79 80 
3 87 n4 86 I 620 104 190 62 1 87 86 
4 ISO 844 142 8 694 ISO 292 702 84 83 
s 2 16 806 2 13 3 742 64 277 74 5 93 9 1 

6 165 6n 16 1 4 629 43 204 633 94 92 
7 92 594 95 0 474 11 7 2 12 474 83 79 

8 127 763 127 0 702 6 1 188 702 93 92 
9 158 765 ISO 7 62 1 145 295 628 84 8 1 

10 152 69 1 152 0 679 12 164 679 99 96 

II 104 840 102 2 744 96 198 746 90 88 
12 11 3 800 Ill 2 7 19 8 1 192 72 1 9 1 87 

13 11 0 757 11 0 0 66 1 96 206 66 1 89 86 
14 11 3 743 109 4 63 1 11 2 22 1 635 86 84 
IS 173 671 173 0 630 41 2 14 630 95 94 

16 100 828 96 4 746 82 178 750 9 1 87 
17 11 3 712 109 3 6 17 96 205 620 88 86 
18 180 832 168 12 725 107 275 737 88 82 
19 136 648 136 0 637 II 147 637 99 95 

20 127 820 126 0 764 57 183 764 94 93 

Mean± SD 90 ± 5 87 ± s 
Abbreviations: REM, rapid eye movement; OSA, obstructive sleep apnea; LSU, Louisiana State University; GT, ground truth; CV, cross validation; ABR, 
analysis of brain recurrence; TP, true positive; FP, false positive; TN, true negative; FN, false negative. 
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normal participants (SHHS cohort). When biomarker function 
was trained on the ABR biomarkers for the REM and NotREM 
epochs, the accuracies of the determinations of REM matched 
that obtained in the LSU cohort (Table 3).

For both cohorts, the overall results when using the other 
derivations were similar to the results found using C3 (data not 
presented).

Discussion

REM sleep is a prime example of the connectivity model of 
cognition because REM is mediated by a dynamic array of 
interconnected neuronal networks (Figure 3). ABR is a 
method for quantifying brain connectivity that is particularly 
useful for studying sleep. We previously found that ABR 
depth variables were correlated with NREM stages, but were 
unable to distinguish REM from WASO.9 To overcome this 
problem, we defined an index of variability in sleep depth, 
and tested the hypothesis that REM could be identified using 
a statistical combination of ABR markers. In both cohorts 
studied, we found that the ABR results matched ground truth 
as determined by expert staging (Tables 2 and 3), with accu-
racies of 86% to 90% in the initial statistical evaluations, and 
85% to 87% in the cross-validation studies. Thus, as hypoth-
esized, REM sleep could be reliably identified using a single 
EEG channel, irrespective of the presence or absence of 
OSA.

The demonstration of the ability to find REM in the EEG 
depended on knowledge of ground truth (expert staging), which 
is necessary for creation of a biomarker function.19 The accuracy 
achieved in doing so (Tables 2 and 3) is evidence that REM had 
an objectively discernable fingerprint in the EEG—the showing 
of which was the study objective. Even so, success in training a 
classifier to recognize REM is no guarantee or indicator that any 
specific classifier will recognize REM in subjects on which the 
classifier has not been trained. We partially addressed this ques-
tion by showing that the cross-validation results were essentially 
identical to those found in the initial analysis.

REM sleep is a prime example of the connectivity model of 
cognition because REM is mediated by a dynamic array of 
interconnected neuronal networks (Figure 3). ABR is a method 
for quantifying brain connectivity and is therefore suited for 
studying REM. ABR is consistent with the idea that REM can 
be conceptualized as a generalized brain state,7 similar to the 
way the progressively deeper stages of non-REM sleep are 
conceptualized. Our observation that the overall accuracy of 
algorithmic identification of REM in the EEG did not depend 
on the derivation of the signal supports this notion. The ability 
to identify REM directly from the EEG could facilitate studies 
of the nature and purpose of REM sleep. For example, it is 
recognized that REM may be identifiably altered by various 
disorders, including depression,19 narcolepsy,20 and alcohol-
ism.21 ABR could help identify unrecognized REM fingerprints 
of these conditions in the sleep EEG. Furthermore, in principle, 

Table 3.  Algorithmic Determination of REM Sleep in Normal Subjects (SHHS Cohort).

Ground Truth ABR Calculated ABR Result GT-ABR Agreement

Subject REM Not REM TP FN TN FP REM Not REM Initial (%) CV (%)

  1 224 590 186 38 492 98 284 530 83 87
  2 191 851 137 53 563 289 426 616 67 71
  3 158 734 155 3 680 54 209 683 94 90
  4 133 913 133 0 746 167 300 746 84 89
  5 90 812 87 3 736 76 163 739 91 87
  6 132 876 124 8 752 124 248 760 87 80
  7 190 657 178 12 577 80 258 589 89 90
  8 201 767 169 32 585 182 351 617 78 83
  9 185 655 152 32 515 141 293 547 79 84
10 189 641 185 4 620 21 206 624 97 96
11 199 592 188 11 512 80 268 523 88 94
12 188 625 174 14 558 67 241 572 90 81
13 188 565 170 18 494 71 241 512 88 93
14 237 564 199 37 469 96 295 506 83 81
15 249 744 233 15 659 86 319 674 90 92
16 88 750 87 1 682 68 155 683 92 84
17 214 532 178 36 434 98 276 470 82 84
18 191 897 191 0 740 157 348 740 86 85
19 217 950 182 35 746 204 386 781 80 70
20 116 620 107 8 579 42 149 587 93 81
M ± SD 86 ± 7 85 ± 7

Abbreviations: REM, rapid eye movement; SHHS, Sleep Heart Health Study; GT, ground truth; CV, cross validation; ABR, analysis of brain recurrence; TP, 
true positive; FP, false positive; TN, true negative; FN, false negative.

 at MISSISSIPPI STATE UNIV LIBRARIES on November 13, 2014eeg.sagepub.comDownloaded from 



6 

A 

Connectivity 
Strength 

~ s~ 

Ow. 
e Local neuronal 

netoork 

Clinical EEG and Neuroscience 

Figure 3. Neuronal network interactions governing rapid eye movement (REM) sleep exemplify the complexity conjecture (A) regarding 
the origin of the human EEG. A) The instantaneous strength of the connectivity between local networks is represented by the color 
intensity of their interconnecting lines. (B) REM occurs when REM-on neurons in the extended ventrolateral preoptic area (eVLPO) inhibit 
REM-off neurons in ventrolateral periaquaductal gray (viPAG) and the lateral pontine tegmentum (LPT), whose function is to actively inhibit 
REM-on neurons in the precoeruleus (PC) and parabrachial (PB) networks (dorsolateral pons). The PC and PB networks send excitatory 
projections to the basal forebrain (BF), hippocampus (HC) and neocortex, and to the sublateral dorsal nucleus (not shown) from which 
neurons project to inhibitory intemeurons which produce muscle atonia. 

ABR could increase the temporal resolution of sleep, leading to 
a fmer-grain understanding of REM. 

In conclusion, ABR analysis allowed reliable identification 
of REM epochs in subjects with or without OSA, using the 
EEG from a single derivation. 
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