Application of Recurrence Quantification to the Analysis of Brain Electrical Activity

Andrew A. Marino, PhD Professor, Department of Neurology LSU Medical School Shreveport, LA

Objectives

- Brain structural complexity
- Recurrence analysis & brain electrical activity
- Applications

Master Control Function of Brain

Brain Structural Complexity

Brain Functional Complexity

Standardized Scalp Locations and Labels Used for EEG Measurements

•Circled locations used for results presented here (particularly C3)

Nonstationarity in the Human EEG (Normalized Histogram of 1-sec EEG Epochs)

^{*}First zero of the autocorrelation function

History of Brain Recurrence Analysis

Definition of Analysis of Brain Recurrence (ABR)

Elements of Analysis of Brain Recurrence

Recurrence Variables in ABR

Experimental Designs in ABR

Statistical Considerations in ABR

- Statistical tests
 - Paired t test
 - Wilcoxon signed rank
- Statistical significance
 - Pair-wise
 - Family-wise
- Statistical methods
 - Linear discriminant analysis
 - Receiver operating characteristics
 - Support vector machines

Inability of Linear Method to Detect Nonlinear Determinism

Recurrence Analysis of Model Systems

Initial Detection of EPs in Rabbits using ABR

Average Results for %R and %D in Each of Ten Rabbits

Experimental Arrangement for Human Studies of Evoked Potentials

Statistical Basis for Observations of Evoked Potentials

How does recurrence analysis detect transient changes in the EEG?

Detection of Nonlinear Magnetosensory Evoked Potentials in Human Subjects

Detecting EPs Triggered by Brief Stimuli (Standard Clinical Procedure)

Magnetosensory Evoked Potentials

	Stimulus			%R	%D	%R	%D	All	No.	Family-Wise
Subject	(Hz)	%R	%D	(8–10Hz)	(8–10Hz)	(9–12Hz)	(9–12Hz)	Effects	Tests	Error
S1	60	O1 C4 P4	_	_	_	_	_	O1 C4 P4	6	0.001
(30F)	30	O2 C3	O2 C3	_	_	_	_	O2 O2 C3 C3	12	0.001
S2	60	02	O2 P3	_	_	_	_	O2 O2 P3	12	0.004
(54M)	30	01	Х	C4	O1	_	_	O1 O1 C4	23	0.022
S 3	60	Х	C4 P3	Х	01	_	_	O1 C4 P3	22	0.047
(23M)	30	P3	P3	O2, C4	_	_	_	O2 C4 P3 P3	17	0.004
S 4	60	01	01	C4	_	_	_	01 01 C4	17	0.009
(22M)	30	C3	C3	01	_	_	_	O1 C3 C3	17	0.025
S 5	60	Х	х	01	01	C3	_	01 01 C3	29	0.042
(51F)	30	O1 P3	P3	_	_	_	_	O1 P3 P3	12	0.01
S6	60	C4	C4	Х	х	P4	_	C4 C4 P4	27	0.14
(23M)	30	Х	O1	Х	Х	O2 P3 P	4 —	O1 O2 P3 P4	29	0.017
S 7	60	Х	х	O1 O2 C4 P3	P4 —	_	_	O1 O2 C4 P3 F	4 18	0.001
(29F)	30	C4	C4	C3	_	_	_	C3 C4 C4	17	0.046

- •
- .

22

Arrangements for Detecting Presence of Neurological Disease

Onset-Induced Evoked Potentials in Patients with Multiple Sclerosis

Subjects with multiple sclerosis

Subject	EEG Derivations	Family-Wise Error
1 (40)	_	_
2 (34)	_	_
3 (52)	_	_
4 (32)	O1 O2 C3 C3 C4	0.003
5 (19)	_	—
6 (30)	O2 O2 C3	0.029
7 (18)	_	_
8 (27)	C3 C4 P4	0.029
9 (50)	_	—
10 (31)	_	—
11 (38)	_	_

Controls (no medical complaints)

Subject	EEG Derivations	Family-Wise Error
1 (51)	O2 O2 C3	0.031
2 (66)	O2 C3 C3 P4	0.001
3 (22)	—	_
4 (26)	C3 C4 C4 P3	0.001
5 (23)	C3 C4 P4	0.001
6 (23)	C3 C3 C4 C4	0.001
7 (23)	O1 C3 C3 P3	0.004
8 (46)	O1 O1 C3	0.005
9 (23)	O1 O2 C4 C4 P3 P4	0.000
10 (25)	P3 P3 P4	0.084

Explication of Presence Effect

Detection of the Presence Effect

Sound Stimulus							
Subject	Age/Gender	%D	%R	V _{rms}			
S 1	30/M	O1 C3 C4 P3	O1 C3 C4 P3				
S2	45/M	O1 O2 C3 C4 P3 P4	O2 C3 C4 P3 P4	_			
S 3	23/F	O1 O2 C4 P4	_	_			
S 4	29/F	_	C3 C4 P4	_			
S5	28/F	O1 C3 C4 P3	O1 P4	O1 C3 C4 P3			
		Field Stimu	ılus				
Subject	Age/Gender	%D	%R	V _{rms}			
<u>S6</u>	18/F	O1 C3 C4 P3 P4					
S 7	30/M	O1 O2 C3 C4 P3 P4	O1 P3 P4	—			
S 8	50/F	O1 O2 C3 C4 P3 P4	—	—			
S 9	49/F	O1 O2 C3 C4 P3 P4	O1 O2 P3 P4	—			
S10	46 /F	O1 C3 C4 P3	—	—			
		Light Stimu	ılus				
Subject	Age/Gender	%D	%R	V _{rms}			
S11	51/F	C3 P4	_	_			
S12	29/M	—	—	—			
S13	50/M	—	O1 C4	C4 P4			
S14	46/F	O1 O2 P3 P4	_				

O1 C4

S15

31/F

Experimental Design for Detecting Effect of Cell-Phone Pulse on EEG

Evoked Potentials in Subjects Exposed to Cell-Phone Pulse

			%R	% D	%R	%D	All	No.	Family-Wise
Subject	%R	%D	(8–10 Hz)	<u>(8–10 Hz)</u>	(9–12 Hz)	(9–12 Hz)	Effects	Tests	Error
S1 (24/M)	P4	01	X	X	O1 O2	_	O1 O1 O2 P4	27	0.010
S2 (53/F)	C4	C4	C3 P3	_	_	_	C3 C4 C4 P3	17	0.002
S3 (22/F)	C3	C3 P3	—	_	—	_	C3 C3 P3 P3	12	0.001
S4 (22/M)	P3	_	_	_	_	_	C3 C4 P3	6	0.001
S5 (22/F)	C3 C4 P3	Х	Х	O1 O2	_	_	<mark>O1</mark> O1 O2	23	0.081
S6 (43/F)	O 1	C4	_	_	_	_	O1 C4 C4	12	0.006
S7 (22/F)	O1 C4	P4	O2	O2	—	_	<mark>O2</mark> O2 P4	23	0.031
S8 (50/F)	Х	Х	Х	O2	P3 P4	_	O2 P3 P4	30	0.062
S9 (62/M)	Х	Х	Х	Х	Х	C4	C4	36	NE
S10 (18/F)	Х	Х	C3	C3	Х	O2	O2 C3 C3	34	0.078

•

-

•

Mechanistic Basis of EMF Detection Studied using ABR

Public Health and Mechanistic Issues Involving EMF Detection using ABR

Data Routinely Obtained During an Overnight Sleep Study

Application of ABR to Sleep EEG

Averages of %R and %D During Sleep (N = 20)

Relation between EEG Recurrence and Severity of Sleep Apnea

N = 10 in each group

LDA & AUROC of ABR Markers from EEG

Abbreviations:

AUROC Area under receiver operating characteristics curve

LDA Linear discriminant analysis

Results for Diagnosing Apnea (Binary Classification)

Use of Support Vector Machines to Diagnose the Severity of Apnea

Comparison of Time-Delay and Spatial Embedding of Sleep EEG

Systems that Produce Time-Series Data Conclusion

Methods for Analyzing / Time-Series Data

