DC MAGNETIC FIELD ALTERS MEMBRANE POTENTIAL IN IEC-18 EPITHELIAL CELLS

I. Iliev and A. Marino LSU Medical Center Shreveport, LA 71130

Some effects of electromagnetic fields (EMFs) may be mediated by an interaction with a mechanism that contributes to cell membrane potential (V_m) .

Evidence that EMFs can affect V_m was sought: The effect of DC EMFs on V_m (measured with 3 M KCl micropipettes) of IEC-18 epithelial cells (rat ilium) was observed before, during and immediately following application of the EMF. A successful impalement was (1) an abrupt change in V_m on entry; (2) a stable potential for 2 minutes (period T_1); (3) return of V_m to baseline after withdrawal of the microelectrode. Cells that met the first 2 conditions were randomly assigned to EMF-exposed or control groups. Cells in the first group were exposed for 2 minutes (T_2), and then followed for 2 minutes (T_3) under ambient EMF conditions. The control cells were treated in a similar fashion, except that no EMF was applied during T_2 . V_m was measured in a bath solution consisting of (in mM): NaCl, 145; KCl, 5.4; CaCl₂, 1.5; MgCl₂, 1; HEPES, 5; glucose, 5; pH, 7.4.

The EMF was generated with a 15-cm coil and measured using a fluxgate magnetometer. The 35-mm dish containing the cells was located coaxially and in the same plane as the coil. The vertical component of the earth's magnetic field at the location of the cells (B_V) was 535 mG (control field). The effect on V_m of doubling or eliminating B_V was measured.

TIME PERIOD	MEMBRANE POTENTIAL (mV)			
	CONTROL (B _V)	$B_V - B_V = 0$	$B_V + B_V = 2B_V$	
T1	$^{A}42 \pm 6 (N=40)$	^A 42±5 (N=15)	^A 42±3 (N=15)	Means having no common superscript differed at P<0.05.
T_2	$^{\mathrm{A}}42\pm6$	$^{\mathrm{B}}28\pm13$	$^{\rm B}53\pm10$	
T ₃	$^{A}42 \pm 6$	$^{\rm B}29\pm16$	$^{AB}44\pm18$	

We concluded that DC EMFs were transduced by IEC-18 cells via a directionallydependent post-translational ionic mechanism.