PRE-MARKET APPLICATION

CFS™ ${ }^{\text {™ }}$ FOR TREATMENT OF KNEE-LIGAMENT INJURIES PLASTAFIL, INC.

VOLUME 7

TABLE OF CONTENTS (THIS VOLUME)

7. PMA AMENDMENTS

FDA's first notice of deficiencies, dated June 22, 1990
Plastafil's response to FDA's first notice of deficiencies, dated February 21, 1991
FDA's second notice of deficiencies, dated November 21, 1990
Plastafil's response to FDA's second notice of deficiencies, dated February 21, 1991
FDA's third notice of deficiencies, dated July 12, 1991
Plastafil's response to FDA's third notice of deficiencies, directed to Director of the Office of Device Evaluation, dated July 25, 1991

Plastafil's additional response to FDA's third notice of deficiencies, directed to FDA Commissioner David Kessler, dated July 25, 1991

Andrew A. Marino, Ph.D. President
Plastafil, Inc.
P.O. Box 268

Belcher, Louisianna 71004

RE: P900020
Plastafil CFS" (Carbon Fiber System)
Received: March 26, 1990
Dear Dr. Marino:
The Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA) has completed an initial review of your premarket approval application (PMA). We regret to inform you that your application is incomplete and cannot be filed at this time. This means that the PMA will not undergo further review by CDRH until the deficiencies listed below are corrected or adequate justification for the omission of any item is submitted.

In order for the PMA to be filed, you must respond to the following deficiencies:

1. You must provide an explanation as to why this study was not conducted in compliance with 21 CFR Part 812 as required in 21 CFR Part 814.20 (b)(6)(ii)(B). It appears from the study design reported in the PMA that several changes and deviations from the original protocol occurred in violation of 21 CFR Part 812.35. Proper compliance to the investigational plan is the responsibility of the sponsor as described in 21 CFR Part 812.46. For instance, you must provide an explanation of why you include an open phase with no control patients when there was no provision for such a trial in the original design, and why the randomization scheme was changed to result in a $3: 2$ ratio of device treated to controls from a $1: 1$ ratio. In addition, please explain why implants were used in nine patients who had injuries only to the posterior cruciate ligament which was not one of the subgroups approved for this study.
2. You must report on all complications with the device. The report on complications is not complete as required in 21 CFR Part 814.20 (b)(6)(i1) because the incidence of synovitis, extra-articular infections, intra- and extra-articular failures, graft laxity, septic arthritis, and presence of carbon particles are not reported.

Page 2 - Dr. Andrew A. Marino
3. Patient accountability is extremely poor. It is not possible to identify all patients entered in the study who remained through its completion. A flow chart showing all patient groups from the initiation of study through its termination would clarify this. All withdrawals, losses, formation of new sub-groups should be clearly indicated in the chart.
4. Patient follow-up information is incomplete and confusing as reported. The "random-sampling model" suggested is not acceptable. Information for each parameter measured should be presented in life tables to include data for each time point as specified in the study protocol (that $18,0,3,6,9,12$, and 24 months) plus any length of time beyond 2 years. The intervals should be selected in such a way that each patient is represented once in each interval. The following information should be included in such a table:
a. patients in each category;
b. patients lost to follow-up;
c. patients due for follow-up visit;
d. complications;
e. withdrawals;
f. deaths; and
g. missing data.
5. It is not possible to assess whether randomization of the sample population into control and treated groups was achieved. You must explain how randomization was achleved.
6. The mechanical testing data are inadequate because no bending fatigue, tensile fatigue, creep or abrasion test data have been provided. The CDRH Intra-Articular Ligament Guidance Document should be consulted in order to provide the necessary test data for this PMA submission.
7. The Manufacturing Section lacks sufficient information to validate the sterilization process for this device and to determine whether this process adversely affects the device's physical and mechanical properties. The sterilization information must include the sterility assurance level of the device for the radiation sterilization process, the radiation dose, the radiation source, and complete validation data. Also, complete information concerning device packaging, bioburden, and pyrogen testing must be submitted.

As provided by 21 CFR 814.42(d), you may resubmit the PMA with the additional information necessary to correct the above deficiencies or you may request in writing within 10 working days of your receipt of this letter an informal conference with the Director of the Office of Device Evaluation (ODE) to review the decision not to file the PMA. Any review will be based only on information within the existing PMA and will be limited to a reconsideration as to whether any of the not filing criteria in 21 CFR 814.42(e) apply. The Director of ODE will hold this informal conference within 10 working days of receipt of the request and will render a decision on filing within 5 working days after the informal conference. If, after the informal conference, FDA accepts the PMA for filing, the filing date will be the date of the decision to accept the PMA for filing. If the Director of ODE does not reverse this decision not to file the PMA, the applicant may request reconsideration of the decision from the CDRB Director.

A request for reconsideration by the Director of CDRH must be submitted in writing within 30 working days of your receipt of a denial for filing from the Director of ODE. The request must contain written descriptions of your positions on the issues critical to filing. The Director of CDRH will render a written decision within 60 days of receipt of your request. If, after the review by the Director of CDRE, FDA accepts the PMA for filing, the filing date will be the date of the decision to accept the PMA for filing. If, after his review, the Director of CDRH does not reverse this decision not to file, that denial constitutes final administrative action for the purpose of judicial review.

The following additional deficiencies were noted in this initial review. While they did not directly relate to our decision to not file your PMA, you should make every effort to address them in your next amendment.

1. Justify why the total scores for patients in the control and treated groups cannot be used to establish a success/failure criteria for this study.
2. Submit subject report forms for all patients.
3. Submit an acceptable justification for the sample size determination.
4. Provide a summary of the complication rates for each investigator.
5. Submit the baseline data for the South African studies along with a description of the selection criteria used to select these cases.
6. Provide revised chi square test analysis to compare distribution of data at time intervals that meet the conditions in Item \#4.

Page 4 - Dr. Andrew A. Marino

If you need to obtain clarification regarding any of the above deficiencies and the measures required to correct them, a request for an informal conference with the Director of ODE is inappropriate. Instead, we suggest that you contact or meet informally with the reviewing ODE division.

Any resubmission of the PMA to correct the above deficiencies, any request for an informal conference with the Director of ODE to review this decision not to file the PMA, or any other correspondence pertaining to this PMA should be identified as a PMA amendment and should include the above PMA reference number to avoid unnecessary delays in its processing. Please submit 6 copies, or 3 copies in the case of a request for an informal conference. Please address all submissions to:

PMA Document Mail Center (HFZ-401)
Center for Devices and Radiological Health
Food and Drug Administration
1390 Piccard Drive
Rockville, Maryland 20850
FDA must consider the PMA to have been voluntarily withdrawn if you do not respond in writing to this request for an amendment within 180 days of the date of this letter as provided under 21 CFR 814.44(g). You may, however, amend the PMA within the 180 day period to request an extension of time to respond. Any such request is subject to CDRH approval and must justify the need for the extension and provide a reasonable estimate of when the requested information will be submitted. If you do not amend the PMA within the 180 day period to (1) respond to the above deficiencies, or (2) request an extension of time to respond and have the request approved, FDA will close this file and not accept any amendments referencing this PMA number. Under these circumstances, any resubmissions will be given a new PMA number and will be subject to the requirements of 21 CFR 814.20.

This letter reflects the current progress of our review of your application. It should be noted that the time allotted for the agency to perform a filing review and the condition of your PMA may not have permitted us to identify all deficiencies that the application may contain. Please be advised that continued review of your application and/or your response to this letter may result in additional deficiencies.

Page 5 - Mr. Andrew A. Marino

If you have any questions concerning the deficiencies listed above, please contact Michael J. Blackwell, D.V.M., M.P.H., at (301) 427-1036.

Sincerely yours,
Hawk N. Ny per
Charles H. Hyper
Director, Premarket Approval Staff Office of Device Evaluation Center for Devices and Radiological Health

February 21, 1991

PMA Docurent Mail Center ($\mathrm{HFZ}-401$)
Center for Revices and Radiological Healtt.
Food and Drug Administration
1390 Piccard Drive
Rockville, ML 20850

RE: P900020
Plastafil CFS" (Carbon Fiber System)

Dear Sirs,
This letter and its appendices are in response to FDA's letter dated June 22, 1990. On 「ecmber 13, 1990 I requested an extension of time within which to respond to the deficiencies listed in FDA's letter.

In what follows, "I" refers to both Plastafil, which is the sponsor of the CFS" Carton Fiber System, and to me personally. "PMA" refers to Plastafil's Pre-market Approval application listed above. "IDE" refers to Plastafil's investigaticnal device exemption fle $20122 / \mathrm{s} 3$. "Device" refers to either the portion of the CFS" Carbon Fiber System consisting of the carbon-fiber implant itself, or to the carbon-fiber implant together with the fixation devices, whichever is appropriate in the circumstances in which the term is used. "Cases" refers to patients who received the Fevice; "Controls" refers to patients who received standard therapy. "Guidance Document" refers to Guidance Document for the Preparation of Investigational Cevice Exemptions and Fre-Market Approval Applications for Intra-Articular Prosthetic Knee Ligament Devices, Division of Surgicel and Rehabilitation Devices, Center for 「evices and Radiological Health, USFDA, 1987.

FDA requested responses to thirteen deficiencies, described in seven numbered paragraphs, and in six statements in one unnumber paragraph. I have responded to each point, in the order in which it was raised. In some cases I divided FRA's commert into several narts to facilitate a reply. In each instance, FDA's comment is reproduced verbatim, followed by Plastafil's reply.

FDA: Page 1, Faragraph 1, Sentence 1: "You must provide an explanation as to why this study was not conduct ϵ in compliance with 21 CFR Part 812 as required in 21 CFR Part 814.20 (b)(6)(ii)(B)."

PLASTAFIL REPLY: The aforenentioned section requires: "a statement that each study was conducted in compliance with Part 812 or Fart 813 concerning sponsors of clinical investigations and clinical investigators, or if the study was not conducted in compliance with those requlations, a brief statement of the reason for the noncompliance." The term "study" is not defined in Part 814 , but from 21 CFR 814.20 (b)(6)(ii) it seems that the
term refers to clinical investigations involving human subjects with the Device, whether or not conducted under an IDE. Plastafil's clinical investigation under the IJE was conducted in compliance with Part 812. It was also conducted in compliance with the Institutional Review Board regulations in Part 56, and in compliance with the informed consent regulations in Part 50.

The clinical studies conducted by Drs. Mare, Demmer, Botha, and Penny reported in the PMA application were not conducted ir compliance with the Institutional Review Board regulations (Part 56), the informed consent regulations (Part 50), or regulations concerning sponsors of clinical investigations and clinical investigators (Part 812). The reason for noncompliance vas thet the investigators had no legal or other obligation to comply with the aforementioned Parts. This information has previously been furnished ($4 E-1^{*}, 2 ; 4 E-21$). In brief, the surgeons, each of whom is a citizen of a foreign country, provided the results of their clinical studies because the FDA staff felt that the information would be useful with regard to evaluating Plastafil's PMA, notwithstanding the fact that it was not generated under Plastafil's IDE.

Abstract

FDA: Page 1, Paragraph 1 , Sentences 2, 3, 4, and 5: "It appears from the study design reported in the PMA that several changes and deviations from the original protocol occurred in violation of 21 CFR Part 812.35. Proper compliance to the investigational plan is the responsibility of the sponsor as described in 21 CFR Part 812.46. For instance, you must provide an explanation of why you include an open phase with no control patients when there was no provision for such a trial in the original design, and why the randomization scheme was changed to result in a $3: 2$ ratio of device treated to controls from a $1: 1$ ratio. In addition, please explain why implants were used in nine patients who had injuries only to the posterior cruciate ligament which was not one of the subgroups approved for this study."

PLASAAFIL SEPLY: Staff raises the issues of (1) an open phase with no control patients; (2) the use of the implant in patients who had injuries only to the posterior cruciate ligament; and (3) the use of the $3: 2$ ratio, not a l:l ratio. I will reply to the first two issues together, and the third iss e separately.

Non-IDE Levice Use. In mid-1083, Dr. John Albright expressed a desire to use the Device in some patients who had an injured posterior cruciate ligament or who had a totally dislocated knee (salvage patients). During the summer of 1983 I presented Dr. Albright's proposals to FDA staff during several telephone conversations. I explained Plastafil's willingness to provide the Device, and Dr. Albright's willingness to undertake the responsibility for its use. Plastafil's concern was that our actions might be construed as marketing the Device in violation of Section 301 of the Food, Drug and Cosmetic Act (FD\&C) -- which was not the case. I asked: (1) Did the proposed uses amount to requests for approval of a modification of the IDE so as tc include two additional study groups; (2) for the purposes of the proposed uses, was the Device a Custom Device
*Volume 4 E , page 1 of the PMA. Subsequent references in this form similarly refer to the indicated volume and page numbers of the PMA.
within Section $520(b)$ of the FD\&C fct and therefore exempt from Section 515? Initially, it was suggested that the proposal amounted to the inclusion of additional study groups, and that some formal steps were needed for the inclusion to be valid. But I pointed out: (1) The Device was not offered for commercial distribution to Dr. John Albright (or anybody else). (2) The Device was used to meet the unique needs of Dr . Albright's patients; Plastafil neither requested nor received a list of inclusion or exclusion criteria for use of the Device, nor did Plastafil make any recommendations regarding either criteria. The Device was used in particular patients whose clinical and anatomical features were, in Dr. Albright's discretion, suitable for use of the Device. (3) The Device was not commercially distributed, and no fee was charged for the Device. (4) Plastafil was not regularly engaged in providing Custom Levices, and that we would not do so for any individual other than Dr. John Albright. When Plastafil was satisfied that its actions would not be viewed as commercial distribution of an unlicensed medical device in interstate commerce, it provided the Devices to Er. Albright to use as he thought appropriate. Plastafil never advocated the Device for use in salvage procedures because our rationale for the use of the Device did not extend to such an application; furthermore, we never advocated use of the Device for isolated PCL injuries because we had no intention of conducting a study that would directly test that hypothesis. Despite these facts, Plastafil made no attempt to impose its judgment on Dr. Albright, and made the Device available to him at his request, based on our respect for his efforts and his judgment.

21 CFR Part 812.46 describes the sponsor's responsibility in the situation in which an investigator fails to comply with the investigational plan. No investigator in Plastafil's IDE clinical study failed to comply with the investigational plan because each investigator, insofar as 1 am awar'., substintially adhered to the investigational plan with regard to all its pertinent and substantive aspects including entry criteria, randomization, surgical procedures employed, handing and treatment of the device, and conduct of follow-up examinations.

In summary, for the abovementioned reasons, it is a mischaracterization of Plastafil's activities to assert that the issues raised were "deviations from the original protocol ... in violation of 21 CFR Part 812.35." The first issue related to a use of the Device that was thoroughly discussed with Staff at the time the use was carried out, and which was justified by considerations not rertinent to the IDE. The second issue related to an appropriate use of the Device that did not involve the hypotheses considered in the IDE study.

3:2 Allocation of Patients. In the IDE we said: "The randomization scheme used to allocate patients to treatment groups will result in approximately one experimental for each control" (emphasis added). The question posed by Staff therefore amounts to whether our use of a patient ratio of $1.5: 1$, and not $1: 1$ is a "change" within the meaning of the applicable version of Section 812.35. We concluded at the inception of the study that it was not such a change and that the use of 1.5:1 rather than 1:1 was scientifically desirable and justified. There were several bases for our conclusions.

Not a change within the meaning of Section 812.35. On January 18, 1980
the FDA promulgated a final rule regarding Section 812.35 (supplemental application), effective July 16, 1980 (45 FR 3755) that provided in pertinent part: "(a) Changes in Investigational Plan. A sponsor shall (1) submit to FDA a supplemental investigation if the sponsor or an investigator proposes a change in the investigational plan that may affect its scientific soundness or the rights, safety, or welfare of subjects, and (2) obtain IRB and IDA approval of the change before implementation...."

In adopting this final rule FDA made it clear that it was intended to apply only to changes affecting the safety of subjects or the validity of the investigation: "Supplemental applications are required only for the addition of new institutions to an investigation and for changes in the investigational plan that may affect the scientific soundness of the study or the rights, safety, or welfare of subjects" (45 FR 3745).

On January 27, 1981 the FDA adopted an amendment to Section 812.35, effective July 27, 1981 which read in pertinent part: "(a) Changes in Investigational Plan. A sponsor shall: (1) Submit to FDA a supplemental investigation if the sponsor or an investigator proposes a change in the investigational plan and (2) obtain IRB approval (see Section 56.110(b)) and FDA approval of the change before implementation."

FDA again amended this Section, effective April 12, 1983 (48 FR 15621) to provide, in pertinent part: "(a) Changes in Investigational Plan. A sponsor shall: (1) Submit to FDA a supplemental investigation if the sponsor or an investigator proposes a change in the investigational plan that may affect its scientific soundness or the rights, safety, or welfare of subjects and (2) obtain FDA approval of any such change and IRB (institutional review board) approval then the change involves the rights, safety, or welfare of subjects (see Sections 56.110 and 56.111), before implementation."

The Section was modified again (50 FR 25909, June 24, 1985; 50 FR 29932, July 17, 1985) and presently reads as follows: "(a) Changes in Investigational Plan. A sponsor shall: (1) Submit to FDA a supplemental investigation if the sponsor or an investigator proposes a change in the investigationl plan that may affect its scientific soundness or the rights, safety, or welfare of subjects and (2) obtain FDA approval under Section $812.30(a)$ of any such change, and IRB approval when the change involves the rights, safety, or welfare of subjects (see Sections 56.110 and 56.111), before implementation...."

Even if use of a patient ratio of $1.5: 1$ were to be considered a "change", the only aspect of the study to which it could reasonably be viewed as pertinent is that of the study's scientific sounciness. That is, use of this ratio has no direct link with the question whether the device in any particular patient is more or less safe, or more or less efficacious. Thus, if there were a "change" within the meaning of Section 812.35, it affected "scientific soundness". But our IDE study was authorized by letter dated March 4, 1983, and the version of Section 812.35 that was in effect as of that date specifically removed "scientific soundness" as a "change" that must be submitted to FDA for prior approval. As a consequence of these considerations, I irterpreted the law to mean that even if there were a "change", it was not a change that required a formal supplemental application.

Abstract

Affirmative reasons for the choice of the $1.5: 1$ ratio. Assume that two surgical therapies are available to treat a particular disease, and that both procedures are performed routinely but that there is no scientific evidence to indicate which procedure is superior. The uncertainty could be resolved by randomizing subjects to the two procedures, and performing suitable follow-up determinations. If the investigating surgeon routinely performed both procedures, the study would contain no a priori bias regarding degree of surgical skill. However, if the patients randomized to one arm were operated on by a surgeon experienced in that procedure, and the surgeon had no experience with the second procedure, then any dif.erence between the two patient groups uight be due to either the relative merits of the procedures, or the relative skills of the surgeon. A similar difficulty in experimental design occurs whener a new therapy is to be tested against a standard therapy; in such instances, surgeons have experience with one procedure, but not the new procedure, and consequently any measured decrement in efficacy in the new procedure might be due to relative inexperience. One acceptable strategy to overcome this difficulty is to provide, in advance, that the number of subjects receiving the new treatment will be greater than those who receive the standard treatment. The rationale is that the relative inexperience will be averaged over a large: subject population than would otherwise have been the case, thereby lessening the impact of this confounding variable on mean performance. Based on this consideration, and after reviewing other clinical studies in which a similar rationale was invoked, we chose to conduct ti:is study at a case:control ratio of $1.5: 1$.

FDA: Page 1, Paragraph 2: "You must report on all complications with the device. The report on complications is not complete as required in 21 CFR Part 814.20 (b)(6)(ii) because the incidence of synovitis, extra-articular infections, intra- and extra-articular failures, graft laxity, septic arthritis, and presence of carbon particles are not reported."

PLASTAFIL REPLY: The statement suggests that Plastafil has violated the aforcmentioned Section because the "incidence" of the above-1isted clinical states was not reported. The Section, however, is silent regarding each of the listed clinical states. Staff's assertion, therefore, is not correct.

The listed clinical states are not defined in the IDE, and I do not understand how the absence of information regarding undefined clinical states can be considered as a violation of the CFR. I cannot provide specific information unless the requests are posed using terms that have a meaning within the context of our study -- each of the listed terms have no such specific meaning because they are judgments, not dependent variables.

The phrasing of Staff's comment creates an irresolvable conflict between the meaning of a scientific term and the pattern of clinical practice. "Incidence" means frequency of occurrence of an event in a population within a particular time interval. Carbon fibers are not radio-opaque, and the presence of carbon-fiber debris (which is what I assume to be the is ue raised here by Staff) cannot be determined unless the patient is arthroscoped (and even that may not be sufficient). It is not acceptable
to conduct routine arthroscopic examinations ir the absence of symptomatology, and in our IDE we expressed no intention to do so. Thus, it is impossible for me to report the incidence of carbon particles.

In alleging the deficiency, I think there has been a failure to recognize the change in the nature of decision-making within the surgical specialties which the FRA, itself, spearheaded. The fublic record shows that sponsors routinely presented the results of uncontrolled clinical studies in which clinical endpoints were evaluated using subjective criteria: Patients did "excellent", "good", or "poor", and they had "graft laxity", "synovitis", and they were "satisfied" or "unsatisfied." since it is the practitioner that is the ultimate consumer of the research, the att empt to express both the design of the study and its results in clinical terms makes eminently good sense. The drawbact in this approach is that it does not provide an objective basis for the degree of confidence that one may place in the conclusion of the study.

There is another procedure for conducting a clinical study. Groups representative of fatients with a specific pathology are treated using alternative therapies, and the results are compared using acceptable clinical and statistical methods, stipulated in advance. These methods must be clinical, otherwise the study has no meaning; they must be statistical, otherwise the study is not superior to the alternative methodology. The basic process for implementing this procedure is to focus on a clinical state, define it in terms of a symptomatology, oscertain the grades or levels of the symptomatology, create a realistic a priori classification scheme, and finally, determine whether treatment affects distribution within the scheme (by analyzing the mean or median of the score characterizing the symptom used to define the clinical state, or the frequency distribution of patients in the various states as a function of treatment). This procedure removes (or goes a long way toward removing) the objection that the conclusion of a clinical study using the anecdotal method was too subjective. The price paid when the scientific method is used is that some clinical states, while remaining of crucial importance with regard to clinical judgment, patient management, diagnosis, and treatment, simply have no well-defined meaning within the decision-making process wherein the investigator seeks to ascertain the superior therapy. In this process, the clinical state has been replaced by the sum total of the symptoms deemed pertinent.

FIA has repeatedly made it clear that it prefers and expects well-designed clinical studies involving appropriate control groups assessed with regard to well-defined objective endpoints using appropriate statistical methodology. This is the kind of study plastafil promised to perform when the ITF was approved in 198?, and it is the kind of study that plastafil did, in fact, perform. Flastafil did not perform an anecdotal study, and therefore we cannot provide onecdotal evidence.
(1) With respect to "synovitis". Synovitis is a clinical condition involving inflammation of the synovial lining of the joint; its presence or absence (except in a florid conditior) is a matter of clinical judgment. I am unaware of any methodology by which the presence or absence of the pathology can be uniouely determined. Moreover, the incidence of synovitis itself is not a meaningful number because, however the condition
may actually be defined, it is expected to occur in all patients to some extent. The pertinent question is whether the incidence of synovitis in the Cases (patients who received carbon fibers) differs from that in the Controls (patients who received standard therapy). The best response consists in characterizing the Cases and Controls with regard to parameters that were accepted prior to the study as being characteristic of the pathology. This was done in Volume 4E, Tables $9-14$ for pain, and Tables 21-26 for swelling for all the patients in the study. The format employed in the preparation of the Tables was that specified in the Guidance Document. A pertinent response to Staff's question is also contained in the parameter SYMPTONS defined in the IDE. The data from our study in the format SYMPTOMS is given in Enclosure 1 with this response.
(2) With respect to extra-articular infections. On page 4D-17 we reported "Mark Boolar (non-randomized study, LSU) experienced pain and tenderness in the area of the toggle, and it was removed in his physician's office under local aresthesia. Bryan Cor per (LSU) underwent removal of both medial bollards after he developed an abscess two weeks postoperatively." These were the only extra-articular infections (or possible infections) noted in our study.
(3) Intra-articular failures. I am unable to provide a definitive reply because I do not know what Staff means by "failures". If "failure" means a situation in which an initial treatment did not satisfactorily resolve an initial complaint, resulting in a second procedure for the same complaint, then the treatment failures in the Plastafil study were described on pages $4 \mathrm{D}-15$ and $4 \mathrm{D}-16$. There were four intra-articular treatment failures in the controls and four intra-articular treatment fallures in the carbon-fiber patients in the chronic category; there were no other treatment failures.
(4) With regard to graft laxity. I am unable to provide a definitive reply because I do not kncw what Staff means by "graft laxity." Moreover, I do not understand the pertinence of a request for information regarding graft laxity because we have performed a controlled clinical study; consequently, no dependent variable has specific meaning except with relatiun to the magnitude of the corresponding variable in the control group. We provided information regarding numerous clinical tests and signs (see Tables 57-68, 103-107) that are pertinent to laxity. The tables were prepared according to the "distribution of scores for each objective item from Appendix 6 and subjective item from Appendix 5 for the entire population, at each time point of data collection according to the format of Appendix $11^{\prime \prime}$ as required in the Guidance Documert. The data from our study in the format STABILITY is given in Enclosure 1 with this letter.
(5) Septic arthritis. We think none, but the limitations and ambiguities described in our response to the four previous clinical states applies with equal force here.
(6) Presence of carbon fibers. We were unable to report the fact or extent of presence of carbon fibers in the knee joint in any scientifically objective manner. Such a determination would have required arthroscopic surgery, tissue biopsy, and a validated quantitative procedure for
analyzing the biopsy specimens. Such a strategy was not proposed in our IDE, and would probably have been ethically unacceptable. The objective information that is available which bears on the issue, and which may be evaluated to make judgments about the existence and extent of carbon fibers in the joint consists of (1) observations regardirg patient symptoms (under the hypothesis that a significant presence of carbon-fiber debris would have produced symptoms); (2) an analysis of the pertinent animal studies regarding the issue of carbon-fiber debris; and (3) the arthroscopic examinations made by Dr. Penny in a series of patients who agreed to be arthroscoped. This information has previously been presented to FDA, and we believe it supports the conclusion that trace presence of carbon fibers may be expected in the joint, but the debris does not have functional significance. I know of no countervailing evidence nor any objective method by which the question might be more adequately assessed.

FDA: paragraph 3: "Patient accountability is extremely poor. It is not possible to identify all patients entered in the study who remained through its completion. A flow chart showing all patient groups from the initiation of the study through its termination would clarify this. All withdrawals, losses, formation of new sub-groups should be clearly indicated in the chart."

PLASTAFIL REPLY: I am unable to provide a definitive reply because I do not know what Staff means by "completion", "termination", "withdrawal", "losses". None of these terms are defined in our study; consequently there is no unambiguous method to determine whether they occurred, or when.

We dealt with human beings who had their own likes, dislikes, priorities, and ambitions. Whel a patient chose not to return for a follow-up examination, I lacked both the legal and moral authority to require compliance. When faced with this difficulty, which occurred frequently, we accepted the patient's decision, and tried again later. No patient (with the exception ciscussed below) is "lost" or "terminated", and no patient "completes" the study in any absolute sense. It cannot be assumed that all subjects dutifully appear when requested to co so by their doctor, because this did not occur in the real world in which we performed our stucy. Indeed, any study performed on subjects who appear on command is probably worthless with regard to establishing inferences for the general population. Our study centers were chosen to provide a representative patient sample; frequently, the patients did not conform to a schedule that suited Plastafil. Banal as it may sound, patients do not respond to a physician's request like automatons, and implementation of the federal regulatory scheme for medical devices must recognize this fact. As difficult as the problem was at one year postoperative, it became increasingly more difficult as time passed.

Staff's assertion "patient accountability is extremely poor" is factually erroneous, and it is my hope that the error will be apparent when Staff evaluates our data in the format provided in this letter (Enclosure 1). The facts will show that our study is the best study involving an orthopaedic implant that has yet been performed and reported, and is probably near the theoretical limit on patient accountability for a study involvirg a cross-section of the population. The major difficulties I faced in reporting our data occurred because the IDE, the Guidance Document, and
the categories defined in $k D A^{\prime}$ s deficiency letters frequently conflict with one another.

FDA: Page 2, Paragraph 4, Sentence 1: "Patient follow-up information is incomplete and confusing as reported."

PLASTAFIL REPLY: All follow-up information obtained during the course of this study has been summarized in the PMA; a copy of all case reports is included with this letter. Not every patient was followed at 3, 6, 9, and 12 months post-operatively for the reason that was described in the preceding Replies. The consequences of this fact are discussed below. The format of the follow-up information provided in the PMA was mandated by the Guida.ce Document -- it was not a format that we chose, nor a format that we proposed in the IDE. Confusion engendered by the preparation of data in the Guidance-Document format is not reasonably attributable to shortcomings on the part of Plastafil.

Plans describing (1) the format in which data would be presented for scientific evaluation, and (2) the statistical methodology that would be employed in evaluating the data were contained in the approved IDE. Below, I present: (1) the pertinent parts of the approved plan dealing with the format of the data and the decisional process to be employed in evaluating device efficacy; (2) the data obtained pursuant to this plan (Enclosures 1 and 2); (3) an analysis of pertinent changes in the implementation of this plan (compared with the plai as originally approved); and (4) the results of analysis of the data performed according to the approved methodology.
(1) The Approved Plan. The plan that Plastafil proposed for evaluating the data from the clinical study is contained in pages $13-15$ in the IDE. The part of the ap roved plan dealing with the data format and the decisional process to be employed in evaluating device efficacy is:

Data Management

Efficacy: The success of the carbon-fiber treatment will be determined on the basis of statistical analysis of the results of Orthopaedic Examinations of the patients. Each patient will be evaluated with regard to the five categories listed in Table 3, using the Forms contained in APPENLIX A of this Protocol. The categories will be weighted, as shown in Table 3, to give the greatest weight to Stability (30\%), equal rights to Symptoms, Function, and Patient's Evaluation (20% to each category), and the least to Deformity (10%).

Data for Symptoms and Function will be entered by the Investigator (or an appropriate assistant) at the tiwe of the Orthopaedic Examination based on answers provided by the patient. A maximum total of 46 and 65 points respectively can be achieved in the two categories; as will be the case for all categories shown in Table 3, the actual values measured will be adjusted, using the appropriate scale factors, to obtain the desired weighting of each category.

Let $O(t)$ be the orthopaedic status of the patient at time t. $O(t)$ is defined to be the sum of the weighted scores from each of the categories as follows:

$$
O(t)=S s+F f+D d+X x+Y y
$$

Where S, F, D, X, and Y, are the raw scores for each category as defined in Table 3, and the lower case symbols are the appropriate scale factors as defined in Table 3. For a patient with no knee disability, $O(t)=100$.
$O(t)$ will be measured at the time of the pre-operative visit ($O(0)$), and at 3-12 months post-opeiative. A Healing Index, HI, may be defined as the ratio of the patient's status at any particular time, compared to that found at the pre-operative visit.

$$
\mathrm{HI}=O(t) / O(0), t=3,6,9,12 \text { months. }
$$

Table 3. Categoriae to be Evaluated-Durias Orthopsedic Examiaation, and Aasigaed Waight.

Caterori	category SYABOL	maxtina RAW POINTS	$\begin{aligned} & \text { FACTOR } \\ & \text { TO } \\ & \text { CONVERT } \\ & \text { T0 } \\ & 0-100 \\ & \text { SCALE } \end{aligned}$	RAW POINTS $0-100$ SCALE	$\begin{gathered} \text { ASSIGNED } \\ \text { WEIGHIT } \\ \hline \end{gathered}$	$\begin{aligned} & \text { FACTOR } \\ & \text { TO } \\ & \text { PRODUCR } \\ & \text { ASSIGNDD } \\ & \text { WEIGHI } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { PACTOR } \\ & \text { SYyBOL } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { EFFECTIVI } \\ & \text { SCALE } \\ & \text { FACTOR } \\ & \hline \end{aligned}$
Syaptome	S	46	0.42	19.2	208	1.04	s	0.437
Punceion	7	65	0.42	27.2	208	0.74	f	0.311
Defornity	D	22	0.42	9.2	102	1.09	d	0.458
Stability	X	48	0.42	20.1 ,	308	1.49	x	0.626
Patient's Evaluation	Y.	58	0.42	24.2	20\%	0.83	7	0.349

mean Deformity score was 2 C .6 , compared with 19.6 in the control group (for which data was obtained on 33 of the 36 patients enrolled). The average follow-up times for each of the orthopaedic categories is listed on page 3. Page 4 of Enclosure 2 contains comparable information regarding the non-randomized group.
(3) The Changes. The decisional process itself is an essential part of the investigational plan. Wholesale or arbitrary a posteriori changes in the investigational plan would make it impossible to perform valid scientific studies, but changes in some aspects of design, conduct, or data evaluation may be necessitated by changed circumstances or unforeseen events. If so, the question whether the experimental hypotheses can still validly be assessed is raised. As discussed previously, not all patients were examined at $3,6,9$, and 12 months post-operatively, because some patients refused to appear for scheduled clinical appointments. If a patient chose not to submit to a clinical examination at a particular time or within a particular time interval, there existed no legal nor moral force that could require compliance. There probably was not a single instance in which a patient was not requested to appear for a timed follow-up at 3, 6, 9, and 12 months post-operatively. Nevertheless, this situation constituted a change from the original plan.

What are the scientific consequences of the absence of data at the timed intervals? If a patient failed to appear at a timed interval, and also failed to appear at all subsequent times, the patient would be lost to follow-up. Every patient lost to follow-up compromises, to some extent, the confidence that one might have in decisions based on the study data, because of the possibility of bias associated with decision-making using only part of the sample. The difficulty is that the investigator could not be certain that the patients still available for follow-up reflected or characterized those that were unavallable. Thus, the existence of patients lost to follow-up inexorably injects uncertainty into the decisional process, thereby weakening any conclusion.

If no patient is lost to follow-up -- that is, if there is some data for every patient, even if the data is not obtained at the same post-operative time point for each patient, then the potential bias associated with lost patients does not exist. With only a few exceptions (discussed at length in the PLiA), this situation applies to the Plastafil IDE study. That is, we have follow-up data for almost every patient (Enclosure 1). Since follow-up data beyond 24 months post-operatively was obtained for essentially every patient enrolled in the study, the question of potential lias due to lost patients becomes irrelevant and the performance of the Case and Control groups can be formally evaluated using appropriate statistical methods.
(4) Data Analysis. The healing index in the Cases in the chronic category (1.60 ± 0.57, page 2 of Enclosure 2) did not differ significantly from the Control value (1.74 ± 0.76) using the unpaired t test. The healing index in the Cases in the acute category (3.24 ± 1.50) did not difier significantly from the Control value (2.7 ± 0.79) using the unpaired t test.

FDA: Page 2, Paragraph 4, Sertence 2: "The 'random-sampling model' suggested is not acceptable."

PLASTAFIL REPLY: The basic value of a statistical approach is that, under the appropriate conditions, data obtained frcm a sample may be used to characterize the parent population. Indeed, in our PMA we urged that data taken on fewer than 15 C patients could be used to make inferences regarding efficacy in a population (those having injured anterior cruciate ligaments) of more than $150,000 / y e a r$. As established by Fisher (R.A. Fisher: J. Ministry of Agriculture of Gr. Brit. 33:503-513, 1926) and endorsed by subsequent authorities (W.J. Dixon and F.J. Massey: Introduction to Statistical Analysis, 4th Ed., McGraw-Hill: New York, 1983; B.J. Winner: Statistical Principles and Experimental Design, 2nd Ed., McGraw-Hill: New York, 1962), the validity of the inferential process depends upon establishing that the sample is representative of the population. The method of randomly choosing subjects is one process by which "representativeness" is assured. Surely if 150 subjects can characterize 150,000 subjects, then 15 subjects can (under appropriate circumstances) characterize 30 subjects. It would therefore be inconsistent to hold that, regardless of all other considerations, it is "not acceptable" to rely on a sample of a sample for the purposes of categorizing the latter; such an assertion is unscientific, and lacks both authority and a logical basis. Not only is the random-sampling model proper, it is probably the only acceptable model because it alone permits a clinical study on the true population -- all patients (not merely those whose socioeconomic, cultural, and medical backgrounds are such that they are certain to dutifully obey the orders of a physician regarding follow-up).

The pertinent que tion posed by a sample-of-a-sample rethodology involves an a priori determination of the probability of occurrence of error. For our PMA, however, this consideration is not important because the sample-of-a-sample methodology is not part of the approved a priori decisional process.

FDA: Page 2, Paragraph 4, Sentences 3 and 4: "The information for each parameter should be presented in life tables to include data for each time point as specified in the study protocol (that is, $0,3,6,9,12$, and 24 months) plus any length of time beyond two years. The intervals should be selected in such a way that each patient is represented once in each interval."

PLASTAFIL KEPLY: I reject the notions that (l) a study exhibiting rigid chronological regularity is possible in a representative patient group, and (2) chronological regularity is a sine qua non of statistical validity. If Staff disagrees I request that FDA take whatever definitive and final steps that are necessarily entailed by its view, because it is neither necessary nor possible for us to provide data at each of the specified time points.

A life table is a table showing the proportion of a group of patients with a chronic disease that survive beyond a specific time chosen as the initial point of observation (J.A. Ingelfinger, F. Mosteller, L.A. Thibodeau and J.H. Ware: Biostatistics in Clinical Medicine, 2nd Ed., Macmillan: New York, 1987). Life tables may be used to evaluate survival as a function of differing treatments for an underlying disease (N. Eng. J.

Med. 311:1333-1339, 1984). I have been unable to find any scientific authority describing the use of life tables for evaluating the efficacy of an implart, compared with standard therapy. Death is not a useful endpoint, and it is unclear what Staff has in mind as a substitute. I can find no indication of either a format or a method of decision using "life tables" in the information disclosed by FDA under the FOI laws regaiding previous ligament devices that were the subject of PMAs. I request that Staff specifically apprise me of (1) what it understands by "a life table" in the context of our study; (2) a scientific or legal authority wherein the method of computation of the life table acceptable to FDA is performed; (3) scientific or legal authority by which life tables for the Cases and Controls are to be compared for the purpose of determining any differences.

If Staff is seeking information regarding treatment failures, this information has previously been provided (4D-15).

FDA: Page 2, Paragraph 4, Sentence 5: "The following information should be included in such a table: (a) patients in each category; (b) patients lost to follow-up; (c) patients due for a follow-up visit; (d) complications; (e) withdrawals; (f) deaths; (g) missing data."

PLASTAFIL REPLY: (a) The patients in each category are listed in Table 1, Volume 4D; the Table lists the name, category, class, grade, and group of each patient. (b) I am unable to provide a definitive response to Staff's request because I do not understand what is meant by the term "lost to follow-up". If Staff means patients regarding whom Plastafil has irreversibly decided that no further follow-up can be obtained, our answer is none. If Staff means patients regarding whom follow-up information directly bearing on the decisional processes regarding safety and efficacy have received no contribution, our reply is contained in detail in Appendix 3, Volume 4D "Accounting for Patients for which the Longest Follow-up was Fewer than 24 Months"). (c) All patients are due for a follow-up visit because we are attempting to follow the group on a permanent basis. (d) I am unable to provide a definitive response because I do not understand what Staff means by "complications." If Staff means complications that clearly involved the Device, the two such instances that occurred durirg the study are described on page 4D-17. If the question refers to information obtained by investigators during follow-up visits ("Complications/Adverse Reactions" section of the "Follow-up Evaluation" form), all such replies received during this study are listed in Enclosure 3. The original data forms are contained in the case records which accompany this letter. (e) None. (f) William Hall was killed in an automobile accident on February 1, 1984 (4D, f.ppendix 3). (g) I am unable to respond because I do not understand what Staff means by "missing data." If by this term Staff means a list of follow-ups from which it may be determined when data was not obtained at $3,6,9$, and 12 months post-operatively, this information is described in Enclosure 1.

FDA: Page 2, Paragraph 5: "It is not possible to assess whether randomization of the sample population into control and treated groups was achieved. You must explain how randomization was achieved."

PLASTAテ̄IL REPLY: Tables of random numbers were prepared, and each number was assigned the status of "Case" or "Control", depending on a priori considerations regarding the desired frequency of each group. \bar{A} probability of approximately 0.5 was chosen for the subjects at Iowa and Brooke, which was achieved by interpreting the even numbers in the table as a code for Cases, and odd numbers for Controls. A probability of approximately 0.6 for Cases at LSU was chosen by assigning even numbers plus numbers ending in the digit 1 to the Case group. At Iowa and Brooke the process was implemented by following the a priori sequence (listed in a Table) as each subject was entered in the study. At LSU the assignment sequence defined by the coding procedure was transferred to a $1-\mathrm{ft}^{2}$ wooden board, $3 / 4$ inch thick, that contained a series of holes. Paper was glued to toth sides of the toard; when the paper on the top surface was pierced, the paper on the bottom surface could be seen. The code for the procedure to be performed was written on the bottom surface. The procedure followed was to systematically punch through the outer paper of the board, column ty column, beginning with the left-most column, and proceeding from top to bottom within each column.

FDA: Page 2, Paragraph 6: "The mechanical testing data are inadequate because no bending fatigue, tensile fatigue, creep or abrasion test data have been provided. The CDHR Intra-Articular ligament guidance document should be consulted in order to provide the necessary test data for this PMA submission."

PLASTAFIL REPLY: Fatigue Testing. The Guidance Document provides (page 9) "fatigue testing must be conducted in order to determine the fatigue life of the device and the elongation due to creep." Also on page 9 the document provides "augmentation devices which are designed to degrade with time and which are not expected to retain any of their original properties in vivo may he excluded from long-term tensile fatigue testing. For these devices, the intended function must be described in detail and demonstrated with animal data. The length of time the device is expected* to carry a significant portion of the load imposed on the knee should be stated. Abbreviated tensile fatigue testing shculd be done as described below in which the fatigue life and elongation due to creep are determined within this time period. In addition, data concerning in-vivo device strength reduction with time must be provided."

The Guidance Document envisions either a frank prosthesis, or a device that is intended to shift load from itself to something else as a function of post-implantation time. The Device fits neither category. The theory of the Device, as was substantiated in the animal testing described in the PMA, is that the induced tissue that occurs as a response to the presence of the carbon fibers becomes oriented during its formation in the direction of the carbon fibers, and that the induced tisue joins pre-exisifing auto:ogou tissue and thereby becomes capable of transmitting force across the knee. Each animal study was designed to explore an

[^0]aspect of this hypothesis, including an animal therapeutic model (Carbon Fibers in Exterior Flexor Tendons of Thoroughbred Racehorses); our interpretaion of the animal data is that it supported the hypothesis. We have no specific expectation that the revice will transmit any particular mechanical load in the immediate post-operative period; we expect that, with the passage of time, the connective tissue elicited by the revice will begin to sustain mechanical loads. Clearly, fatigue and creep testing is not pertinent to a device whose rationale does not involve the tronsmission of force by the device.

Abrasion tests. As CDRH conceded in the Cuidance rocumert (page 11) there exists no abrasion test procedure for the ligament devices envisioned in the Cuidance rocument (frank prostheses or "augmentation devices which are designed to degrade with time"). For even greater reasons, there are no objective abrasion tests regardirg our revice. That is, there is no objective procedure regarding the Device that is capable of yielding a measure of a dependent variable whose value could be incorporated into objective decision-making. There is no basis upon which the meaning of any particular abrasion test could be interpreted with regard to the issues of safety or efficacy -- just as there is no basis for interpreting data from tests on surface reflectivity, temperature coefficient of expansion, or density with regard to the abovenentioned endpoints. Ferformance of abrasion tests would serve no valid scientific purpose, consequently we performed no abrasion tests and do not intend to do so until a scientific basis or rationale for the tests is established.

FDA: Fage 2, Paragraph 7: "The marufacturing section lacks sufficient information to validate the sterilization process for this device, and to determine whether this process adversely affects the device's physical and mechanical properties. The sterilization information must include the sterility assurance level of the device for the radiation sterilization process, the radiation dose, the radiation source, and complete validation data. Also, complete informatior corcerning device packagirg, bioburden, and pyrogen testing must be submitted."

PLASTAFII REPLY: Flastafil is a small company, and we are attemptin to establish our existence by following a lawful and logical pattern consistent with the fact of our limited resources. Our efforts thusfar have been concentrated on obtaining reliable scientific evidence to support our hypothes es that the Device is safe and efficacious. Our hope is that FRA will review this evidence independently from manufacturing considerations: We are not asking that these considerations be waived, but merely that their implementation be postponed until after FLA ras considered the questions of safety and efficacy. If FTA agrees with us that the evidence shows that the Device is safe and efficacious, then Plastafil's task in raising capital to perforn tests necessary to satisfy manufacturing criteria will be greatly eased. We sincerely expect that we will be able to propose acceptable manufacturing standards, and present evidence to indicate that these standards -- the methods for sterilization, for example -- will not alter pertinent Device properties. Even if we were unable to do so -- which is unlikely-- we have already devised a method of sterilization which resulted in not a single instance of intra-articular infection associated with the Device. Thus, even under the abovementioned dubious hypothesis, it is clear that effective manufacturing proced-

Abstract

ures that result in a sterilized product do exist, and have been validated. This conclusion is in direct accord with pertinent in vitro studies involving bacterial adhererce to carbon fibers, and with virtually all anecdotal evidence regarding the clinical use of the Device.

In the interest of fairness, and to help us to not fail for non-substantive reasons, I request that Staff postpore consideration of these issues until after the questions of safety and efficacy have been resolved to its satisfaction.

FDA: Fage 3, It em 1: "Justify why the total scores for patients in the control and treatment group cannot be used to establish a success/failure criteria for this study."

PIASTAFII RFPIY: Fecause the concepts of success and failure are subjective, and are not objectively defined in science, law, or logic. In the IDE, we proposed to evaluate the Cases and Controls according to objective standards, and to determine whether the Groups differed -- this we did. The terms used by Staff were not defined in the JIF and it should therefore not be surprising that they are not employed in our conclusions.

FIA: Page 3, Item 2: "Submit subject report forms for all patients."
PLASTAFII REPIY: One copy of the subject report forms for all patients are included with this letter.

FDA: Page 3, Item 3: "Submit an acceptable justification for the sample size det ermination."

PLASTAFII RFPLY: Consider the data provided on page 2, Fnclosure 2. We desired to end the study when the patient sample was large enough to yield reasorable statistical power against a clirically significant hypothesis other than the null hypothesis. We chose a statistical power of 0.8 against the hypothesis that the Cases were 36% relow the Controls. For the patients in the chronic category a raw effect size of 30% corresponds to a standardized effect size of 0.55 (the raw effect size divided by the root mean square standard deviation). The corresponding n (number of subjects) is 42 (Table 2.3.2, Statistical Power Analysis for the Fehavioral Sciences, J. Cohen, Academic Press, New York, 1977). Since we had entered 43 Cases and 36 Controls, and had obtained 2 -year follow-up on 39 Cases and 30 Controls and had obtained 72 follow-ups amorg the Cases and 50 follow-ups among the Controls (harmonic mean equal to 54), we concluded that a sufficient number of patients had been entered into the study.

With regard to the patients in the acute category the standardized effect size correspondirg to a 30% raw effect size was $\mathbf{~} 4 \%$. The corresponding n for a statistical power of 0.8 is 50 . We terminated the study after entering 31 Cases and 24 Controls (page 2, Enclosure 2) for the following reason. The healing index, which was defined in the IDE as the orthopaedic status of the patient at a particular post-operative time normalized by the pre-operative orthopaedic status, was a well-defined variable for the chronic category, but not for the acute category. In many irstances examinations required to provide a Deformity score could not be
performed because of the patient's condition, and numerical scores for other orthopaedic cateqories including Function, Symptoms, and Patient Evaluation were essentially 0 . Consequently, it is more reasonable to consider the issue using post-operative orthopaedic status without normalizing with the score obtained from the pre-operative orthopaedic evaluation. From page 2, Enclosure 2 it can be seen that a raw effect size of 30% corresponds to a standardized effect size of 1.8 . The number of subjects required to achieve a statistical power of 0.8 for this effect size is fewer than 20. We therefore concluded that we had entered far more than the number of subjects required to exclude the considered hypothesis.

Inclusion of the non-randomized patients (page 4, Enclosure 2) does not change the analysis. They were more seriously injured than the patients in the randmized study (average pre-operative orthopaedic status was 13.33), and the average orthopaedic status after 24 months was 72.06 (compared with 87.34 among the acute cases in the randomized study). The healing index in the non-randomized group averaged 12.75. Thus, if a judgment regarding outcome is based on the Healing Jndex, the contribution from the non-randomized group would tend to favor the Cases compared with the Controls. If the judgment is based on orthopaedic status, the contribution would tend to favor the Controls compared with the Cases, but the auantum of the contribution would be suct that it would not affect any of the prior statistical comparisons discussed above.

FDA: Page 3, Item 4: "Provide a summary of the complications rates for each investigator."

PLASTAFII RFFI.Y: Enclosure 3 lists the complications/adverse reactions reported during the study. For each report, the name of the operating surgeon is listed.

FDA: Page; 3, Item 5: "Submit the baseline data for the South African studies along with a description of the selection criteria used to select these cases."

PLASTAFIL PEPLY: The information I previously frovided from Prs. Mare and Botha included all the pertinent documentary information that I obtained from them. I provided the information in what I believed to be a form that was convenient for review. Enclosed with this letter are photocopies of the documents themselves, as received from Prs. Botha and Mare. Dr. Demmer maintained more detailed records in such a manner that his work was suitable for publication. His results will be published in Clinical Orthopaedics in about $1-2$ months; a copy of the unedited manuscript, together with copies of all documents that he provided to me are also enclosed with this letter.

Each of the surgeons who provided information did so with regard to a consecutive and inclusive series of patients operated on $b \in t w e e n$ the dates that I listed in the PMA. Fach patient received surgery because the operating surgen decided that the procedure was necessary and appropriate for treatment of laxity or instability. None of the three series was carried out with an eye toward publication or FDA submission, and the documentation normally expected for such data is missing. If Staff has
any specific ouesticns about individual patients, I will do my best to obtain the desired information. Alternatively, I invite Staff to contact the surgeors directly, and pose whatever questions it considers pertinint.

The utility of data is determined by the proposition in favor of which it is advanced. We offered the South African data in support of the limited proposition that long-term implantation of carbon fibers does not result in infection, pain, or other untoward developments. My trip to South Africa to obtain this data was not made on my own initiative, but rather at the specific request of Staff (made during our december, 1986 meeting). I did exactly what I was asked to do, and I did it as well as I could. I met each of the surgeons, and spent many hours satisfying myself regarding the accuracy and completeness of the data. The South African surgeons have no interest whatsoever in Plastafil, and yet they put up with many hours of questioning by me, and many hours of poring over their charts and records to provide information in the interest of science, with no expectation of personal benefit. Although I did what Staff asked, nevertheless a serious efistomological issue was raised because I (hence Staff) have no independent basis to evaluate the results obtaired by each of the surgeons -- I must either accept their word that an infection did not occur or chronic pain was not present, or reject it. I would have made no use whatever of the South African data had not the Staff specifically requested me to furnish it.

FDA: Page 3, Item 6: "Provide chi-square test analysis to compare distribulion of data at time intervals that meet the condition of item 4."

PLASTAFIL REPIY: I am unable to respond because I do not understand what Staff means by "item 4." If Staff will inform me of the hypothesis to be tested and the data to be used, and the rationale, I will supply the analyses quickly.

I have endeavored to reply directly and completely to each of Staff's concerns. I fully appreciate the responsibility that the FPA must exercise in carrying out its statutory responsibility. I hope, for its part, Staff views us as conscientious investigators who have stayed the course for many years, despite many roadblocks, and have produced a corpus of data following processes that manifested integrity. We began our work with the idea that the iFs' was at least as good as standard treatments, and all of our subsequent areas of investigation and study ultimately supported our initial hypothesis. We have considered the published literature, performed in vitro, animal, and human studies, and considered anecdotal evidence available to us regarding the use of carbon fibers. We evolved a clear rationale for use of the Device, based on a mechanism of action that was el ucidated in the animal studies. I think that we left no reasonable stone unturned in a search for evidence that might contradict our basic conclusion. J believe that it is truly appropriate for the evaluation process to go forward, and consequently I request that our PMA, as revised by this submission, be accepted for filing.

AAM: mab

PCONTROL PATIFNTS (Chronic Cases), continued

CONTROI PATIENTS (Chronic Cases), continued

*EXTEMT												
T.		OF	PATIENT		TIME	SCORE					CRTHO. ETATUS	HEALING INTFX
NC.	SFRIFS	INJURY	NAME	TREATMENT	(Mos.)	Neform	Funct.	Sympt.	Stab.	Pt. Fv.		
119	Iowa	C-1	Sing letary, Ang ela	Semitendinosis	Pre	20	20	19	--	21	$31.01 \dagger$	
					3	18	13	23	38	15	51.36	
					12	19	37	20	40	15	59.22	
					18	20	59	45	38	43	85.97	
5					39	22	53	30	34	29	71.07	
120	Iowa	C-1	Wat erman, Kyle	PT	Pre	20	49	18	34	17	59.48	
0					3	12	11	20	42	15	49.18	0.83
					6	21	35	23	40	37	68.51	1.15
					9	22	43	46	46	36	84.91	1.43
					13	20	47	21	38	46	72.80	1.22
\cdots					18	20	58	43	42	51	90.08	1.51
					51	20	60	32	40	--	$66.84 \dagger$	
مnd 123	Brooke	C-1	$\begin{aligned} & \text { Clarke, } \\ & \text { Jeffrey } \end{aligned}$	PT	Pre	19	18	14	30	7	41. 64	
					3	21	28	22	44	20	62.46	1.50
					6	22	32	21	44	28	6f. 52	1.60
					9	20	42	44	38	37	78.15	1.88
\%					17	22	57	33	40	46	83.32	2.00
					24	21	49	28	42	47	79.79	1.92
					54	21	58	33	34	50	80.81	1.94
5												
$:$	،'rooke	C-1	Loper, Edgar Vega	PT	Pre	21	25	21	26	22	50.52	
					3	17	12	20	44	9	50.94	1.01
					6	20	17	23	44	7	54.48	1.08
\cdots					9	21	24	21	44	13	58.34	1.15
					12	19	26	23	44	13	58.52	1.17
					24	21	40	32	38	--	$59.83 \dagger$	
p					61	19	35	37	38	29	69.66	1.38
127	Prooke	C-1	Broyles, Keith	PT	Pre	20	21	12	24 32	17	45.00 45.59	
\cdots					3	22	13	15	32	14	45.59	1.01
					6	20	20	11	76	19	49.35	1.10
					9	20	26	19	30	26	53.40	1.19
					34	19	39	18	26	33	56.49	1.26
-					57	21	52	43	24	47	76.01	1.60
129	Brooke	C-1	Barfield, Johnny	PT	Pre	21	33	14	26	21	49.60	
\cdots					3	18	25	21	32	28	55.00	1.11
					6	21	42	22	40	33	68.85	1.39
;					9	20	46	41	38	38	78.43	1.58
m					12	18	45	40	36	42	76.91	1.55
					61	18	51	43	40	32	79.10	1.59
	Brocke	C-1	Tuke, Carl	PT	Pre	22	25	17	28	13	47.34 $12.89+$	
\square^{191}					3	18	4	3	--	6	$12.89 \dagger$	
					6	18	19	13	44	13	51.92	1.10
					40	14	24	12	34	11	44.24	0.93
					54	13	19	19	28	11	41.53	0.88

monntrol patients (Chronic Cases), continued

T-Incompl ete score

1

1	$\begin{aligned} & \text { PT. } \\ & \text { NO. } \end{aligned}$	SERIES	*EXTENT									
			INJURY	NAME	(Mos.)	Teform.	Funct.	Sympt.	Stab.	Pt.Ev.	STATUS	INDEX
\cdots	2	LSUMC	C-1	Gloer, Mark	Pre	22	34	18	14	23	45.31	
					32	21	29	42	36	22	67.20	1.48
					64	18	39	16	32	28	57.17	1.26
\cdots												
,	4	LSUMC	C-1	Rasbury, Richard	Pre	21	40	19	30	29	59.26	
					12	22	54	41	40	39	83.44	1.41
\cdots					26	21	53	41	38	44	83.16	1.40
					43	21	54	43	30	44	79.34	1.34
					58	20	43	40	34	30	71.77	1.21
\cdots	12	ISUMC	C-1	Mondor, John	Pre	22	54	38	32	44	78.86	
i					36	22	60	41	36	48	85.94	1.00
Γ	14	LSUMC	C-2	$\begin{gathered} \text { Cooper, } \\ \text { Keith } \end{gathered}$	Pre	22	31	28	34	24	61.61	
					6	22	36	23	44	45	74.57	1.21
					9	22	54	44	44	43	88.65	1.44
					19	19	52	23	44	43	77.48	1.26
\%					25	19	60	46	44	51	92.81	1.51
					41	16	46	39	34	38	73.22	1.19
					63	17	49	42	38	32	76.34	1.24
[
	15	ISUMC	C-1	Winkler	Pre	21	13	2	22	6	30.40	
				(All en),	6	22	54	43	38	44	84.80	2.79
\cdots				Sharon	23	21	50	32	26	44	70.78	2.33
					40	22	41	30	34	38	70.48	2.32
					55	19	34	24	26	33	57.56	1.89
\cdots	16	ISUMC	C-1	Iux, Gregory	Pre	18	18	9	12	13	29.82	
					3	20	24	22	44	7	56.22	1.88
					6	21	52	45	44	31	83.82	2.81
\cdots					9	22	56	46	44	48	91.89	3.08
!					12	21	54	43	44	48	89.50	3.00
					35	21	51	42	44	43	86.38	2.90
					56	21	55	37	44	16	76.02	2.55
,	17	ISUMC	C-1	Larson, Larry	Pre	21	18	9	20	4	33.06	
					3	21	22	18	40	21	56.70	1.72
\square					6	21	53	23	26	36	64.90	1.96
					9	21	60	39	44	51	90.66	2.74
					37	22	60	41	40	50	89.14	2.70
n					55	20	51	41	40	25	76.70	2.32
	18	I SUMC	C-1	Parden,	Pre	22	22	14	26	12	43.50	
				Lennie	6	22	50	40	40	36	80.71	1.86
\cdots					12	22	56	34	40	41	81.70	1.88
					29	22	56	44	44	45	89.97	2.07
					53	21	57	40	44	51	90.17	2.07

CARBON-FIBER PATIENTS (Chronic Cases), continued

PT.		OF	PATIENT	
	NO.	SERIFS	INJURY	NAME

| TIME |
| :---: | :---: |
| (Mos.) |
| Deform \cdot Funct. Sympt \cdot Stab \cdot Pt.Fv. | ortho. healing

-

Pre	22
6	22
9	22
14	22
25	21
51	18
Pre	22
9	22
21	20
45	21

2	6	34	5
55	42	44	41
59	44	40	46
61	44	44	48
62	44	42	49
49	32	40	--

36.35	
87.39	7.4 C
88.75	2.44
92.57	2.55
91.52	2.52
$62.51 \dagger$	

20	7	38	14	48.03	
57	36	44	50	88.53	1.84
64	46	40	53	92.70	1.93
53	28	34	36	72.18	1.50

Pre	22
9	22
13	22
36	22

0	0	38	2	34.56	
63	23	44	41	81.57	2.36
55	43	44	44	88.87	2.57
65	46	44	56	97.48	2.82

46	26	38	40	73.49	
55	36	40	45	92.74	1.12
55	40	34	43	80.95	1.10

Pre	22
6	21
14	15
27	22
40	21

$\begin{array}{lllll}15 & 8 & 36 & 11 & 44.61\end{array}$

30	21	34	19	56.04	1.26
45	42	36	29	71.88	1.61
38	32	24	26	50.98	1.34
54	34	40	37	79.22	1.78

76 LSUMC C-1 Fnanus,

Pre	22	52	38	40	43	92.90	
3	20	33	21	44	25	64.87	0.78
6	22	42	46	42	41	83.94	1.01
11	22	65	46	44	56	97.48	1.19
30	22	65	46	44	56	97.48	1.18
Pre	22	0	0	30	2	29.55	
12	22	59	40	34	39	90.90	2.73
26	-	44	33	--	38	$41.37 \dagger$	

Pre	19	0	0	30	2	28.18	
3	16	16	6	42	15	46.45	1.65
6	22	26	20	40	16	57.53	2.04
9	21	51	43	40	39	82.02	2.94
53	21	62	41	44	51	92.16	3.27
Pre	22	42	35	32	27	67.89	
3	18	12	17	44	9	50.09	0.74
6	15	11	17	38	12	45.70	0.67
9	15	22	20	38	25	54.96	0.81
12	19	56	45	40	49	87.92	1.30
34	21	55	44	38	47	86.14	1.27
59	16	56	37	44	47	84.86	1.25

	CARBON-FIBER		patients (Chronic Cases), continued									
\bigcirc	PT.		$\begin{gathered} \text { *EXTENT } \\ \text { OF } \end{gathered}$	PATIENT	TIME			SCORF			ORTHO.	HEALINC
T	No.	SERIES	INJURY	NAME	(Mos.)	$\overline{\text { Deform }}$	Funct.	Sympt.	Stab.	Pt.Ev.	Statue	ITPEX
!	92	Iowa	$\mathrm{C}-2$	Grenon,	Pre	18	15	9	26	11	36.96	
				George	3	12	9	15	40	5	41.64	1.13
					6	13	6	13	40	5	40.29	1.89
					9	15	4	10	44	2	40.73	1.10
P					12	14	4	10	44	2	40.27	1.09
					27	20	18	23	44	12	56.54	1.53
Γ	95	Iowa	C-1	Malhotra,	Pre	22	33	32	34	13	60.14	
				Kiran	3	20	10	19	38	2	45.06	0.75
					6	20	16	20	40	2	48.61	0.81
					9	21	35	23	38	22	62.02	1.03
Γ					12	22	48	20	40	33	70.30	1.17
					24	21	56	44	38	41	84.36	1.40
					61	21	62	43	28	42	79.88	1.33
Γ	98	Iowa	C-2	Kiener,	Pre	20	9	5	18	17	31.34	
				Frank	3	20	9	17	38	7	45.62	1.46
					6	21	35	44	26	26	65.08	2.08
[9	20	25	21	38	18	56.18	1.79
					12	21	33	21	36	19	58.22	1.86
					24	22	57	46	38	43	86.70	2.77
Γ					37	20	59	46	38	45	87.10	2.78
					51	22	63	42	40	50	90.51	2.89
\bigcirc	100	Iowa	C-1	Forthrup,	Pre	18	1 c	11	22	14	37.62	
!				Daniel	24	21	18	6	2	23	27.12	0.72
Γ	103	Iowa	C-1	Haldy,	Pre	22	52	39	34	40	78.54	
				Gl enn	3	14	20	12	42	24	55.34	0.70
					6	22	42	46	34	24	72.90	0.93
					10	22	35	20	42	28	65.76	0.84
Γ					13	20	54	23	38	34	71.66	0.91
					24	22	61	46	44	42	91.35	1.16
					51	18	64	45	42	49	91.21	1.16
Γ	110	Iowa	C-1	Montgomery,	Pre	22	0	0	32	15	35.34	
				Lesa	3	20	5	13	38	14	45.17	1.28
					6	21	20	23	40	17	56.86	1.61
\square					9	20	--	--	40	--	$34.20 \dagger$	
					13	21	63	46	36	58	92.19	2.60
					39	19	56	39	42	49	86.55	2.45
Γ^{04}	112	Iowa	C-1	Jons,	Pre	21	26	9	18	12	37.19	
				Jennifer	3	19	21	20	24	2	39.70	1.07
					9	17	10	12	18	8	30.20	0.81
Γ					12	22	14	3	10	8	24.79	0.67
					44	20	25	7	34	--	$41.28 \dagger$	

CAP PT. NO.	SFRIES	$\begin{gathered} \text { *FXTENT } \\ \text { OF } \\ \text { INJURY } \\ \hline \end{gathered}$	PATIENT NAME	$\begin{gathered} \text { TIME } \\ \text { (Mos.) } \end{gathered}$	SCORE					ORTHO. STATUS	HEALING INDEX
					Teform	Funct	mpt	Stab	Pt. Ev		
138	Brooke	C-1	Bassett, Eenton	Pre	22	26	16	30	24	43.15	
				3	20	23	22	30	23	52.73	1.22
				6	21	20	15	26	23	46.70	1.08
				34	20	47	26	--	36	$47.70 \dagger$	
				50	22	17	5	24	19	39.2 C	0.91
139	Brooke	C-1	Mills, Ca ela	Pre	--	0	0	26	4	$17.67 \dagger$	
				3	18	20	19	42	17	54.99	
				6	20	31	23	42	27	64.57	
				9	20	38	15	30	27	55.74	
				15	21	56	35	34	38	76.98	
				30	22	55	28	40	41	78.77	
				47	22	48	31	34	41	74.14	
142	Brooke	C-1	Putts, William	Pre	22	12	12	26	7	37.77	
				3	18	12	19	30	6	41.15	1.09
				6	21	25	12	22	7	38.95	1.03
				36	22	33	35	32	27	65.09	1.72
				50	19	51	26	20	29	58.57	1.55
144	Brooke	C-1	Corcoran, Rob ert	Pre	22	38	20	24	26	54.73	
				3	22	-*	--	38	--	$33.86 \dagger$	
				6	22	39	16	30	26	57.05	1.04
				12	22	33	32	30	21	60.43	1.10
				47	22	35	34	44	21	70.69	1.29
146	Brooke	C-1	Coad, Kelly	Pre	22	39	38	24	31	64.65	
				3	20	18	23	42	10	57.73	0.89
				6	22	35	18	42	31	65.94	1.02
				9	21	39	23	42	37	71.00	1.10
				12	21	57	44	38	45	86.07	1.33
				34	22	64	46	30	56	88.41	1.37
				47	22	65	46	40	58	95.68	1.48
				55	21	59	44	38	--	70.98†	
149	Brooke	C-1	Walker,	Pre	20	12	0	22	11	30.50	
			Fred	3	20	8	10	28	9	36.34	1.19

*C-1, ACI only
$\mathrm{C}-2$, ACI + one or both collateral ligaments
tIncorplete sccre

Γ	CARBON-FIBER CASES Acute Cases											
Γ	PT. $\begin{gathered}\text { *EXTENT } \\ \text { OF }\end{gathered}$											
!	NO.	SERIES	INJURY	NAME	(Mos.)	Deform.	Funct.	Sympt	Stab	Pt.Fv	STATUS	INDFX
\bigcirc	3	LSUMC	A-2	Hightower, Richard	Pre	20	10	0	32	2	33.00	
					9	22	49	44	38	46	84.38	2.56
					12	22	61	44	44	51	03.62	2.84
					33	22	65	46	44	55	97.13	2.94
P					46	22	63	46	42	54	94.91	2.88
!					60	22	65	46	38	56	93.72	2.94
ρ	5	LSUMC	A-2	Wittenburg, St even	Pre	11	0	0	24	2	20.76	
					9	22	57	46	40	45	88.65	4.27
					12	22	65	46	44	50	95.39	4.59
P					26	21	65	44	38	53	91.35	4.40
					42	19	65	46	40	57	93.95	4.52
					58	17	65	44	38	56	90.56	4.36
C	8	LSUMC	A-2	$\begin{gathered} \text { Carner, } \\ \text { James } \end{gathered}$	Pre	13	0	0	30	2	25.43	
					9	22	54	39	42	47	86.61	3.40
					12	22	64	46	44	55	96.82	3.81
F					31	22	53	38	38	40	80.91	3.18
					42	21	50	34	34	40	75.27	2.96
:					55	17	59	33	28	45	73.79	2.90
\square												
!	9	LSUMC	A-3	Jackson, Archie	Pre 24	20 20	0 62	2 44	0 38	48	10.73 88.21	8.22
					43	17	59	44	38	44	84.51	7.98
\cdots					60	20	58	41	44	45	88.36	8.23
!												
	13	LSUMC	A-1	Taylor, Dan	Pre	20	5	0	24	11	29.58	
P					3	-	--	--	44	--	$27.54 \dagger$	
					9	22	63	46	44	51	95.11	3.22
					12	22	65	46	44	56	97.48	3.30
104					33	22	65	46	44	56	97.48	3.30
$\stackrel{1}{1}$					42	--	64	46	40	54	$83.89 \dagger$	
					66	22	65	46	40	56	94.98	3.21
Prom	19	LSLMC	A-2	Toney, Lawrence	Pre	21	9	19	24	8	38.54	
					6	22	20	27	44	11	59.48	1.54
					29	21	33	28	40	30	67.63	1.75
fil					42	19	37	28	40	26	66.56	1.73
					62	17	42	15	44	37	67.86	1.76
	21	LSUMC	A-1	Pease, Randa 11	Pre	22	10	17	38	14	49.29	
I^{m}					3	22	35	23	40	30	66.52	1.35
!					6	22	52	44	40	43	85.52	1.74
					12	21	53	35	40	49	83.54	1.69
\%					24	21	59	21	40	49	79.28	1.61
,					45	20	63	44	42	54	93.12	1.89
					60	21	63	46	44	50	94.31	1.91

CARBON-FIBER PATIENTS (Acute Cases), contimued


```
* A-1, ACL only A-2, ACL + one or both collateral ligaments A-3, ACL + PCL
```

†Incomplete score

NON-RAPDOMTZFD GRCUP

Ctrovic Cases

Γ^{\square}			*EXTENT			SCORE					CRTHC. STATUS	PEALING INCEX
	$\begin{aligned} & \text { PI. } \\ & \text { NO. } \end{aligned}$	SERIES	INJURY	NAME	(Mos.)	Teform.	Funct.	Sympt.	Stab.	Pt.Ev.		
m	27	LSUMC	C-3	Pl emmons,	Pre	18	8	8	44	9	44.91	
				Iebra	6	22	32	22	44	24	65.56	1.46
					9	22	32	22	40	26	63.76	1.42
\cdots					22	19	42	36	40	31	73.36	1.63
!					41	15	35	29	38	36	66.78	1.49
					53	17	39	30	12	33	52.05	1.16
m					64	18	44	39	40	32	75.18	1.67
	38	ISUMC	C-3	Packard,	Pre	22	19	9	22	12	37.88	
				James	6	--	21	27	-	21	25.f6t \dagger	
\cdots					23	10	9	8	18	14	27.03	0.71
	60	ISUMC	C-3	Boobar,	Pre	22	31	14	26	19	48.74	
				Mark	14	21	29	16	26	22	49.58	1.02
					26	17	56	44	--	43	$59.44 \dagger$	
					40	17	46	42	8	39	59.06	1.21

-3
-3
\cdots
\cdots

NON-RANTCEIZED GRCUP

Acute Cases

PT.		$\begin{gathered} \text { *EXTENT } \\ \text { OF } \end{gathered}$	PATTEAT	TIMF(MOS.)	SCORF					$\begin{aligned} & \text { CRTFO. } \\ & \text { STATUS } \\ & \hline \end{aligned}$	HEALIAG INTFX
NO.	SERIES	INJURY	NAME		Deform	Funct.	Sympt	Stab	Ft.Ev		
30	LSUMC	A-3	Herold, James	Pre	17	0	0	26	2	24.76	
				6	22	35	40	38	25	70.95	2.86
				9	22	45	32	38	25	70.57	2.85
				21	22	50	46	40	50	91.02	3.68
				40	22	61	44	44	51	93.62	3.78
				59	-	61	45	36	--	$61.17 \dagger$	
33	ISUMC	A-3	Burns, Jimmy	Pre	4	0	0	0	2	2.53	
				6	22	24	14	44	25	59.93	23.69
				16	21	26	18	40	26	59.68	23.59
				23	17	21	20	38	17	52.78	20.86
				35	16	35	30	44	26	67.94	26.85
				46	17	42	23	36	33	64.95	25.67
46	LSUMC	A-3	Harris, Flcra	Pre	13	0	0	14	2	15.42	
				3	10	13	15	--	18	$21.46 \dagger$	
				6	21	29	15	44	29	62.86	4.09
				9	20	46	20	40	41	71.56	4.64
				12	19	40	22	40	40	69.76	4.52
				19	21	35	20	42	24	63.91	4.14
				30	18	16	14	38	15	48.36	3.14
				42	16	28	15	36	23	53.15	3.45
48	ISUMC	A-3	Pittman, Maurice	Pre	12	0	0	0	2	6.19	
				6	22	53	23	20	50	66.58	10.76
				9	22	62	46	40	51	92.30	14.91
				12	22	61	46	20	52	79.82	12.89
				17	22	49	22	40	39	73.58	11.80
				24	22	65	46	42	53	95.18	15.38
				38	21	60	44	14	54	75.12	12.14
71	ISUMC	A-3	Jones, Emma	Pre	22	0	0	0	2	10.77	
				7	15	--	--	38	--	$30.66 \dagger$	
				9	--	19	18	--	14	$18.35 \dagger$	
				16	17	30	18	42	26	60.35	5.60
				29	15	32	14	--	34	$34.81+$	
82	ISUMC	A-3	Jessie, William	Pre	--	0	0	--	--	O.CCt	
				18	20	55	38	40	32	79.08	
				31	20	58	34	40	32	78.26	
83	ISUMC	A-3	Walker,	Pre	12	0	0	0	2	6.19	
			Maurice	44	15	55	43	26	37	71.96	11.62

[^1]| \cdots | | RANDOMIZED STUDY | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | Average Pre-op Scores | | | |
| Γ | | CHRCPIC CATEGORY | | | |
| | | | No. OF | | No. OF |
| Γ | | CARBON | PTS. | CONTROL | PTS. |
| | Deformity | 21.17 ± 1.25 | 42/43 | 20.03 ± 2.54 | 34/36 |
| T | Function | 25.28 ± 15.76 | 43/43 | 26.61 ± 14.62 | 36/36 |
| 1 | Symptoms | 16.49 ± 12.15 | 43/43 | 15.89 ± 10.71 | 36/36 |
| | Stability | 27.53 ± 6.48 | 43/43 | 28.00 ± 6.01 | 32/36 |
| Γ | Patient Evaluation | 19.02 ± 11.36 | 43/43 | 17.14 ± 9.78 | 36/36 |
| | Orthopaedic Status | 48.78 ± 15.01 | 42/43 | 49.38 ± 12.66 | 31/36 |
| | | actite catrgory | | | |
| Γ | | CARBON | $\begin{aligned} & \text { NO. OF } \\ & \text { PTS. } \end{aligned}$ | CONTROL | $\begin{aligned} & \text { NO. OF } \\ & \text { PTS. } \end{aligned}$ |
| | Deformity | 18.96 ± 3.54 | 29/31 | 18.82 ± 3.29 | 22/24 |
| | Function | 4.48 ± 11.05 | 31/31 | 3.83 ± 7.36 | 23/24 |
| Γ | Symptoms | 4.03 ± 9.73 | 31/31 | 3.68 ± 7.62 | 22/24 |
| | Stability | 28.52 ± 7.76 | 31/31 | 31.83 ± 9.84 | 24/24 |
| ¢ | Patient Evaluation | 6.83 ± 7.86 | 30/31 | 6.61 ± 6.34 | 23/24 |
| | Orthopa edic Status | 32.44 ± 10.45 | 28/31 | 33.60 ± 9.02 | 19/24 |

Average Post-op Scores (≥ 24 mos.)
CPROAIC CATEGORY

	CARBON	NO. OF PTS.	NO. OF FOLLOWUPS	CONTROL	NO. OF PTS.	$\begin{aligned} & \text { NO. OF } \\ & \text { FOLIOW- } \\ & \text { UPS } \\ & \hline \end{aligned}$
Deformity	20.60 ± 2.60	41/43	78	19.62 ± 2.17	33/36	56
Function	47.30 ± 13.94	$42 / 43$	80	52.53 ± 12.40	33/36	55
Symptoms	33.48 ± 12.52	42/43	80	38.16 ± 9.80	33/36	56
Stability	35.92 ± 7.51	41/43	77	37.82 ± 5.39	32/36	55
Patient Evaluation	37.96 ± 12.17	41/43	76	43.04 ± 11.46	31/36	50
Orthopaedic Status	74.64 ± 16.17	39/43	72	80.28 ± 14.11	30/36	50
Healiry Index	1.60 ± 0.57	39/43	70	1.74 ± 0.76	27/36	44

ACUTE CATEGORY

	CARBON	$\begin{gathered} \text { NO. OF } \\ \text { PTS. } \end{gathered}$	$\begin{aligned} & \text { NO. OF } \\ & \text { FOILOW- } \\ & \text { UPS } \end{aligned}$	CONTROL	$\begin{aligned} & \text { NO. OF } \\ & \text { PTS. } \end{aligned}$	$\begin{aligned} & \text { NO. OF } \\ & \text { FOLLCW- } \\ & \text { UPS } \end{aligned}$
Deformity	20.23 ± 1.94	29/31	53	19.58 ± 2.08	20/24	36
Function	59.09 ± 7.27	29/31	54	55.11 ± 8.86	21/24	37
Symptoms	41.76 ± 6.84	29/31	54	37.14 ± 8.04	21/24	37
Stability	38.87 ± 5.22	29/31	55	38.33 ± 6.19	21/24	36
Patient Evaluation	48.50 ± 8.26	29/31	54	44.17 ± 9.29	20/24	35
Orthopaedic Status	87.34 ± 8.44	26/31	51	81.70 ± 10.64	19/24	33
Healing Index	3.24 ± 1.50	26/31	48	2.70 ± 0.79	14/24	25

Average Follow-up Times ($\geq 24 \mathrm{mo}$	
CHRONIC	CATEGORY
CARBON	
40.95 ± 12.17	41.75 ± 12.24
40.96 ± 12.27	41.49 ± 12.20
40.96 ± 12.27	41.75 ± 12.24
41.04 ± 12.22	41.34 ± 11.97
40.18 ± 12.15	40.58 ± 11.61

ACUTE CATEGORY

	CARBON	
	39.68 ± 11.46	
Deformity	39.28 ± 12.56	
Function	39.91 ± 11.47	
Symptoms	39.46 ± 12.43	
Stability	39.94 ± 11.47	39.46 ± 12.43
Patient Fvaluation	39.68 ± 11.32	

NON-RANDOMIZED GROOP

	CHRONIC	e Pre	res ACUTE	
		$\begin{aligned} & \text { NO. OF } \\ & \text { PTS. } \\ & \hline \end{aligned}$		NO. OF PTS.
Deformity	20.67 ± 2.31	3/3	13.33 ± 5.99	$6 / 7$
Function	19.33 ± 11.50	3/3	0.00 ± 0.00	7/7
Symptoms	10.33 ± 3.21	3/3	0.00 ± 0.00	7/7
Stability	30.67 ± 11.72	3/3	6.67 ± 11.00	$6 / 7$
Patient Evaluation	13.33 ± 5.13	3/3	2.00 ± 0.00	$6 / 7$
Orthopa edic Status	43.84 ± 5.51	3/3	10.98 ± 8.09	$6 / 7$

Average Post-op Scores (≥ 24 mos.)

	CHRONIC	$\begin{aligned} & \text { No. OF } \\ & \text { PTS. } \end{aligned}$	$\begin{aligned} & \text { NO. OF } \\ & \text { FOLLOW- } \\ & \text { UPS } \\ & \hline \end{aligned}$	ACUTE	$\begin{aligned} & \text { NO. OF } \\ & \text { PTS. } \end{aligned}$	$\begin{aligned} & \text { NO. OF } \\ & \text { FOLLOW- } \\ & \text { UPS } \\ & \hline \end{aligned}$
Deformity	16.50 ± 1.00	2/3	4	18.20 ± 2.82	7/7	10
Function	44.00 ± 7.97	2/3	5	46.64 ± 16.69	7/7	11
Symptoms	36.80 ± 6.91	2/3	5	32.00 ± 13.42	7/7	11
Stability	19.33 ± 16.29	2/3	3	35.56 ± 9.79	6/7	9
Patient Evaluation	36.60 ± 4.50	2/3	5	35.80 ± 13.24	7/7	10
Orthopa edic Status	63.27 ± 9.96	2/3	4	72.06 ± 15.94	5/7	9
Healing Index	1.38 ± 0.24	2/3	4	12.75 ± 9.51	5/7	8

	Average Fol CHRONIC	Times (>24 m ACUTE
Deformity	40.00 ± 11.04	35.90 ± 7.26
Function	44.80 ± 14.38	38.00 ± 9.80
Symptoms	44.80 ± 14.38	38.00 ± 9.80
Stability	44.67 ± 7.23	36.67 ± 7.26
Patient Evaluation	44.80 ± 14.38	35.90 ± 7.26

ISUMC				CMPI ICATIONS/ANVERSF REACTIONS							
NAME	CATEGORY \& CLASS	$\begin{gathered} \text { CP. } \\ \text { CATE } \end{gathered}$	SURGECN	TYPF	date of CNSET	duration	MAXIMIM SEVERITY (since last report)	TPFATMENT 1=None ?=Medical treatment 3=Surgical treatment	CuTcome $1=$ Recovered $2=$ Residual effects $3=$ Currently under treatment	Rei aten to CF imflant? $1=\mathrm{N}^{\circ} \mathrm{O}$ 2=Possibly 3=Prohably $4=$ Definitely 5=Inknown	COMMEMTS
Hightower, R.	A-2, CF	4/15/83	Keating	Delayed healing	4/16/83	1 wk.		2	1	5	Mild drainage from wound for 3-4 days post-op., but now healing
Gloer, M.	C-1, CF	4/11/83	Keating	Int emmittent pain and instability	6/83	2 mos.					Arthroscody, debridement of lateral meniscal tear. Found Grade J chondromalacia. Cleared 2 weeks later.
Cooper, B.	C-2, CF	7/11/83	Keatirg	Infection	$\begin{aligned} & \text { noted } \\ & 2 / 14 / 85 \end{aligned}$						No details given.
Winkler, S.	C-1, CF	7/21/83	Waddel 1	Pain				2			1/18/89: Treatment: Aspirin, work with more care, less exertion and sometimes wrap with Ace bandage.
Iarson, I.	C-1, CF	7/6/83	Waddel 1		$\begin{aligned} & \text { not ed } \\ & 10 / 7 / 83 \end{aligned}$						30 cc straw colored fluid aspirated from knee. No sign of infection.

I SumC				COMPI ICATIONS/ADVFRSE REACTIONS							
NAME	CATFGORY \& CIASS	$\begin{gathered} \text { CP. } \\ \text { DATE } \end{gathered}$	SURGECN	TYPE	$\begin{gathered} \text { PATE CF } \\ \text { ONSET } \end{gathered}$	DURATICN	MAXIMUM SEVERITY (since last report)	TREATMFNT 1=None 2=Medical treatment 3=Surgical tr eatrent	CUTCCTE $1=$ Recovered 2=Residual effects 3-Currently und er treatment	PELATES TO CF IMPI ANT? $1=$ No 2=Possibly $3=$ Frobably $4=$ 「efinitely 5=[!nknown	COMMENTS
Toney, I.	A-2, CF	7/29/83	Keating	Adhesions in suprapatellar pouch	$\left\lvert\, \begin{aligned} & \text { not ed } \\ & 10 / 26 / 83 \end{aligned}\right.$			3		1	Diagnostic arthroscepy with lysis of adhesions (probably due to having polio as a child) -- CFs rot imvolved.
Jenkins, L.	C-1, CF	$0 / 22 / 83$	Keating	Pain	$\left\lvert\, \begin{aligned} & 1985 \\ & \text { (noted } \\ & 2 / 15 / 88 \text {) } \end{aligned}\right.$			2			Treated at least 3 years with Motrin 6 CN mg . No induration or elema.
Pease, R.	A-1, CF	9/21/83	Keating	Swel ling, stiffness	6/88			2			RCM from 20-90. Knee appears stable. 1/3 effusion. No evidence of infecticn. Appears to have synovitis. Treated with antiinf lamuatories.
$\begin{gathered} \text { Packa rd, J. } \\ \text { (NR) } \end{gathered}$	$\mid C-3, \quad \text { CF }$	1/29/84	Keating	```Ost eomy- elitis l eft proximal tibia```	1/85	2 mos .	2	2	1	5	Treated with Keflex orally for 10 days for "bone infection"; no seauelae.

bamc				COMPL ICATICNS/ADVEPSE REACTIONS							
NAME	CATEGORY \& CIASS	$\begin{gathered} \mathrm{CP} . \\ \text { ГATF } \end{gathered}$	SURGFCN	TYPE	$\begin{gathered} \text { fate cF } \\ \text { ONS FT } \end{gathered}$	riraticn	MAYIMIM SFVFRITY reince last report)	trfatment $1=$ None $2=$ Medical treatment 3=Surgical treatment	CuTceme $1=$ Recovered $2=$ Residual effects $3=$ Currently under treatment	Reiater to CF TMPJ APT? $1=\mathrm{N}^{\circ}$ 2=Possifly 3=Probably $4=$ Definit ely 5=Unknown	CMMMFNTS
Toney, R.	C-1, CF	8/25/83	Markey	Popping (one epi sode)	11/17/83			1			Patient heard "pop" while descendirg stairs. No effusion or tenderness.
Barfield, J	C-1, con	9/22/83	Markey	Soreness, stiffness, articular (?) phenomenon	12/84						```Fe-operated 12/7/94 for deridement patella lateral (?) retinacular (?) release.```
Tolley, I .	C-1, CF	9/29/83	Markey	$\begin{aligned} & \text { Knee pops } \\ & \text { out 2-3 } \\ & \text { times a } \\ & \text { week } \end{aligned}$							+ Lachmanr; +pivot; - pain; - effusion; + (?). No synovitis.
Duke, C.	C-1, con	10/12/8?	Markey	Pain (mild contiru- al, occasicrally sharp)							Can't straighten leq. No explanation tion or comments.

NAME	CATEGORY \& CLASS	$\begin{gathered} \text { CP. } \\ \text { DATE } \end{gathered}$	SURGEON	TYPE	$\begin{aligned} & \text { DATF CF } \\ & \text { ONSET } \end{aligned}$	DURATION	MAXIMUM SFVERITY (since last report)	TREATMFNT l=None 2=Medical treatment 3=Surgical treatment	CITCOME $1=$ Recovered 2=Residual effects $3=$ Currently under treatment	RFLATED TO CF JMPI AN'T? 1=No 2=Fossibly 3=Probably $4=$ Pefinitely 5=Unknown	COMMENTS
Leeper, D.	A-1, CF	12/12/83	Markey	Re-injury	$\begin{aligned} & \text { not ed } \\ & 7 / 84 \end{aligned}$						Person stomped on back of knee; buckled \& swelled for 3 days.
				Giving way	not ed 8/84						Running with brace, turned corner to right, knee gave way.
Walker, F.	C-1, CF	4/5/84	Markey	Meniscal repair	$\begin{array}{\|l} \text { not ed } \\ 6 / 25 / 84 \end{array}$						Heal ed; mild warmth with bogginess to synovium. Pain all the time. Meniscal repair -- but (?)
Byrd, J.	C-1, Con	2/13/84	Markey	$\begin{aligned} & \text { Contrac- } \\ & \text { ture } \end{aligned}$	11/7/84						Poor motion. 25° flexion contracture. Casted to rel ease contracture.
					2/15/85						Casted for one month during Nov.-「ec. 13. $20^{\circ} \mathrm{flex}-$ ion contracture.
Butts, W.	C-1, CF	1/1/84	Mark ey	Inflammation	soon ofter surg ery	3-4 days	1	1	1	1	Noted 2/3/87

Iowa CCMFLICATICNS/ATVFRSE REACTIONS											
NAME	$\left\|\begin{array}{l} \text { CATEGORY } \\ \& \text { CIASS } \end{array}\right\|$	$\underset{\text { CATE }}{\substack{\text { CP. } \\ \hline}}$	SURCEON	TYPE	date of ONSET	rupation	MAYIMIM SFVERITY (since last report)	TRFATMENT $1=$ Fone $2=$ Medical treatment $3=$ Surgical treatment	nutcome $1=$ Recovered $2=$ Residual effects $3=$ Currently under treatment	$\begin{aligned} & \text { RFLATFD TC } \\ & \text { CF MPPIANT? } \\ & \text { 1=N0 } \\ & 2=\text { Possibly } \\ & \text { 3=Probably } \\ & 4=\text { Pefinitely } \\ & 5=\text { Unknown } \end{aligned}$	COMMENTS
Gremon, G.	C-2, CF	1c/4/83	John Al bright	Pain, Inf lamma tion			3	2,3	3	2	Severe medial and lateral chondromalacia with large lateral flap.
Edwa rds, r.	C-2, con	8/22/84	John Albright	Injury	10/86	1.5 ros.	2	2	3	1	Patient fell while fishirg 5-6 weeks ago, causing knee to go into further flexion. It is felt that this has helped to loosen up the ACI \& medial capsule. Fut intc knee immobilizer.
				Delayed healing	10/84	4.5 mos.	2	2	3	1	Knee has continued to loosen. Put in ILC at 40° flexion for next 4-6 wks.
				Mild antanterior medial joint line pain	Noted 9/8/86			2	3	1	PLRI. Fhysical therapy for eastrocnemius str eng thening, Iowa knee brace

Iowa				CRMPI ICATICNS/ALVEPSE RFACTIONS							
NAME	CATFGORY \& CIASS	$\begin{gathered} \text { OF. } \\ \text { DATE } \end{gathered}$	SURGECN	TYPF	dATE OF OMSET	duration	MAXIMUM SEvFRITY (since last report)	$\begin{aligned} & \text { TPFATMENT } \\ & 1=\text { None } \\ & 2=\text { Medical } \\ & \text { treatment } \\ & 3=\text { Surgical } \\ & \text { treatment } \end{aligned}$	$\begin{gathered} \text { CUTCCMF } \\ 1=\text { Reccvered } \\ 2=\text { Residual } \\ \text { effects } \\ ==\text { Currently } \\ \text { under } \\ \text { treatment } \end{gathered}$	RFIATED TC CF JMPIANT? $1={ }^{\circ} \mathrm{o}$ 2=Possibly $3=$ Probably $4=$ Definitely 5=Unknown	COMMENTS
Schlicher, C.	A-1, CF	10/3C/84	John Alt right	Incr cas ed laxity	$\begin{aligned} & \text { Noted } \\ & 2 / 7 / 85 \end{aligned}$		2	2	?	3	Pt. has bequn to stretch out his rx(?). This is believed to te caused by (1) the carbon fibers becoming mechanically inactive and (2) because patient has not been using his crutches and using oundriceps more than advisable. Will be put in immobilizer to see if it tightens up.
				Increas \in d laxity	Mot ed $2 / 7 / 85$	3 mos.	2	2	3	3	Further increase in laxity from 2/7/85. ROM: 0$135^{\circ}$. Ant erior drawer: 7-8 man, I>R; Lachman's: 6$7 \mathrm{~mm}, L>R$. 「esire is to fut ft. back into a cast but pt. is against this.

Iowa				COMPLICATJCNS/ALVERSE REACTIONS							
NAME	CATFGORY δ CLASS	$\underset{\text { CPTE }}{\substack{\text { CP. }}}$	SIRCEON	TYPE	$\begin{gathered} \text { DATE OF } \\ \text { ORSET } \end{gathered}$	duration	MAXIMUM SEVERITY (since last report)	$\begin{aligned} & \text { TREATMENT } \\ & \text {]=A'one } \\ & \text { 2=Medical } \\ & \text { treatment } \\ & \text { 3=Surgical } \\ & \text { treatment } \end{aligned}$	ortcomp $1=$ Recovered 2=Residual effects 3=Currently urder tr eatment	Related to CF JMPLANT? $1=\mathrm{Fo}$ 2=Possibly 3=Probably $4=$ Tefinitely 5=lnknown	COMMENIS
$\begin{array}{\|l} \text { Sand erson, } \\ \text { J. } \end{array}$	C-1, Con	12/13/83	John Albright	Inf lammation	6/1/84	1 wk .	2	1	3	1	Has sense of median parapat el lar "pinching." Very rigorous activity school . Tiagnosis: Mild overuse syndrome.
Sand erson, J.	C-1, con	12/13/83	John Albright	Increased 1axity	Not ed 1/10/85			2	3	3	1 yr. assessment Doing well functionally and sta-bility-wise. Has devel oped very mild pivot recently.
Kimber, I.	A-1, Con	4/6/84	John Albright	Pain	Noted 10/18/84	.	1	1	2	1	Skin scar appears to be adhesed to the deep fascial layers where semitendinosis has been adhered. Adhesion of skin to hamstring tendons. Mild.

Ltwa	\cdots	3	3	3	3	3	${ }^{1} \mathrm{COH}_{4}$	ATlu. PadVin	RFAusin		3
NAME	CATFGORY \& CLASS	$\begin{aligned} & \text { CP. } \\ & \text { ГATE } \end{aligned}$	SURCECN	TYPE	$\begin{gathered} \text { DATF CF } \\ \text { ONSET } \end{gathered}$	DURATICN	MAXIMUM SEVERITY (since last report)	TRFATMENT $1=$ None 2=Medical treatment $3=$ Surgical treatment	OCTCOME 1=R ecover ed 2=Residual effects 3=Currently under treatment	$\begin{aligned} & \text { REI ATFD TO } \\ & \text { CF IMPLANT? } \\ & 1=\text { No } \\ & 2=\text { Possibly } \\ & 3=\text { Probably } \\ & 4=\text { Pefinit ely } \\ & 5=\text { Inknown } \end{aligned}$	COMMENTS
Kimber, I.	A-1, Con	4/6/84	John Albright	Adhesion	12/1c/84	2 mos.	2	3	3	1	Well heal ed - there is scar adhesion to the hamstrings on the posteromedial aspect that will be removed this Fri. Also "see note on exam of surgical site" (unavail.)
					1/15/87		Mild	3	3	1	Post-capsular retinacular flexion contracture. Problem was and still is ankyloeis, not laxity.
Briges, C.	A-2, CF	5/15/83	John Albright	Skin flap necrosis	5/17/83	8 wks.	1	1	1	1	Medial skin flap necrosis (super-ficial-eridermal). Negative cultures. Straight incision, probably 7° to stapl es. Knee. CK.
				Skir slough	5/17/83	6 mos.	1	1]	1	Tiny area gramulalation left - wound healing well (still pink scar). No effusion; no t end erness.

Iowa \quad COMPL CATICNS/AFUFRSF PEACTIONS											
NAME	CATEGORY \& CIASS	$\begin{gathered} \mathrm{CP} . \\ \mathrm{DATE} \end{gathered}$	SURGEON	TYPE	rate or CNSET	TURATION	MAXIMUM SFVERITY (since last report)	treatment $1=$ Fione 2-Medical treatment 3=Surgical treatment	Oircomp $1=$ Recovered $0=$ Residual effects $3=$ Currently under treatiment	$\begin{aligned} & \text { RFIATED TO } \\ & \text { CF MPLANT? } \\ & \text { 1=No } \\ & \text { 2 } 2 \text { Possibly } \\ & \text { 3=Probarly } \\ & 4=\text { Nefinitely } \\ & 5=\text { Unknown } \end{aligned}$	COMMFNTS
Hill, J.	C-1, CF	$5 / 16 / 83$	John Alt right	Cast neuropraxia	5/18/84	5 days	?	1	1	1	Post-of mild cast neuropraxis. 4 day relayed casting. Relayed (neuropathy?) 4 days post-op. Pesolved.
				Decremed sensation	5/18/84	9 mos.	1	1	3	1	Still wearing Iowa brace, still experiencing neuropraxia (small area).
Burriola, M.	C-2, con	7/18/83	John Albright	?	7/21/8.	5 days	1	2	1	1	None.
$\left\lvert\, \begin{gathered} \text { Burriola, } \\ \text { M. } \end{gathered}\right.$	C-2, con	7/18/83	John Albright	Auto accident	10/23/83		1	1	2	1	Pevelopment of post erolat eral rotatory instability and reverse pivot after auto accident (dashboard to tibia with posterolat eral pain at 4 mos. post-op). +/-brace foot plate in 15° extension rot. Has been noncompliant about knee brace.

Iowe				CCMPL ICATICNS/ALVFRSF RFACTIONS							
NAME	CATEGORY \& CLASS	$\begin{aligned} & \text { OP. } \\ & \text { ГATE } \end{aligned}$	SURGECN	TYPE	TATE CF CNSET	dufation	MAXIMIM SFVERITY (since last report)	treatment $1=$ None $2=$ Medical treatment 3=Surgical treatment	OUTCCME $1=\mathrm{R}$ ecovered 2=Residual effects $3=$ Currently und er treatment	pflatfr 10 CF IMPLAMT? $1=\mathrm{No}$ 2=Possibly 3=Probably $4=$ Definitely 5=linknown	CCMMFNTS
$\begin{aligned} & \text { Burriola, } \\ & \text { M. } \end{aligned}$	C-2, Con	7/18/83	John Altright	Fpisode of instability (reverse pivot) with pain, laxity	2/28/84	2 mos .	7	2	?	1	PIRI with reverse pivet. Has pain. 2° chondromalacia.

Others				COMPLICATICNS/ADVFRSE REACTICNS							
NAME	CATEGORY \& CLASS	$\begin{aligned} & \text { CP. } \\ & \text { ГATE } \end{aligned}$	SURGEON	TYPE	tate cf ONSFT	DURATION	MAYIMOM SFVERITY (since last report)	$\begin{aligned} & \text { TRFATMFNT } \\ & \text { 1=None } \\ & \text { 2=Medical } \\ & \text { treatment } \\ & \text { 3=Surgical } \\ & \text { treatment } \end{aligned}$	$\begin{gathered} \text { OuTCOME } \\ 1=R \in C o v e r e d \\ 2=R e s i d u a l \\ \text { effects } \\ 3=\text { Currently } \\ \text { under } \\ \text { treatment } \end{gathered}$	RFIAIED TO CE IMPIANT? $1=N_{0}$ $2=$ Possibly 3=Probably $4=$ Tefinitely 5=Unknown	CMMENTS
$\begin{aligned} & \text { Bocbar, M. } \\ & \text { (ISU) } \\ & \text { (NR) } \end{aligned}$	C-3, CF		Keating	Pain, t end erness of medial condyle of femur							Toggle removed in office.
Sing l etary, A. (Iowe)	C-1, CF	1/14/85	John Altright	Moderate patellofemoral pain							Moderate pain has delayed rehabilitation.
Murphy, D. (Iowa)	A-2, CF	10/13/85	John Alt right	Increased laxity	4/3/86	2 ros.	Mild	2	1		Incremsed translation anteriorly reduced activity and use immobilizer at night.

NOV 2 I 1990

Andrew A. Marino, Ph.D.

President
Plastafil, Inc.
P.O. Box 268

Belcher, Louisiana 71004

Re: IDE NUMBER G820122/S13
Plastafil CFS' ${ }^{\text {T }}$ Carbon Fiber System
Dated: October 12, 1990
Received: October 23, 1990
Dear Dr. Marino:

The Food and Drug Administration (FDA) has reviewed the sections in your PMA application which you refer to for the fulfillment of the requirement to submit an annual progress report to your investigational device exemptions (IDE) application and has determined that additional information is required. Please address the following concerns:

1. It appears from the study design reported in the PMA that several changes and deviations from the original protocol occurred in violation of 21 CFR Part $812.35(\mathrm{a})$. Proper compliance to the investigational plan is the responsibility of the sponsor as described in Part 812.46. For instance, there is no explanation why you include an open phase with no control patients when there was no provision for such a trial in the original design and also there is no explanation why the randomization scheme was changed to result in a $3: 2$ ratio of device treated to controls instead of 1:1 ratio. In addition, implants were used in nine patients which had injuries only to the posterior cruciate ligament which was not one of the subgroups approved for this study.
2. Additional information is needed on the complications reported. The incidence of synovitis, extra-articular infections, intra and extra-articular failures, graft laxity, septic arthritis, and presence of carbon particles are not reported. Although you state that these occurred at low levels, the variability in the frequency of follow-up visits among patients may have made it impossible to detect the actual incidence of complications.

Page 2 - Dr. Andrew A. Marino
3. Patient accountability is extremely poor. It is not possible to identifiy all patients entered in the study who remained through its completion. A flow chart showing all patient groups from the initiation of study through its termination would clarify this. All withdrawals, losses, formation of new sub-groups should be clearly indicated in the chart.
4. Patient follow-up information is incomplete and confusing as reported. The "random-sampling model" suggested is not acceptable. Information for each parameter measured should be presented in life tables to include data for each time point as specified in the study protocol (that is, $0,3,6,9,12$, and 24 months) plus any length of time beyond 2 years. The intervals should be selected in such a way that each patient is represented once in each interval. The following information should be included in such a table:
a. patients in each category;
b. patients lost to follow-up;
c. patients due for follow-up visit;
d. complications;
e. withdrawals;
f. deaths; and
g. missing data.

A patient is considered lost to follow-up beginning at the time when he/she first missed a visit and the patient did not later have an evaluation after that time period.

Since the IDE regulation does not specify the information to be submitted in the annual progress report, we are enclosing the guidance document entitled "Suggested Format for IDE Progress Report" which highlights the type of information to be included.

This information must be submitted to FDA within 30 days from the date of this letter. It should be identified as an IDE supplement referencing the IDE number above, and must be submitted in triplicate to:

IDE Document Mail Center (HFZ-401)
Center for Devices and Radiological Health
Food and Drug Administration 1390 Piccard Drive
Rockville, Maryland 20850

Page 3 - Dr. Andrew A. Marino

If you do not provide this information within 30 days from the date of this letter, we may take steps to propose withdrawal of approval of your IDE application.

If you have any questions, please contact Michael J. Blackwell, D.V.M., M.P.H., at (301) 427-1036 or Ms. Nancy F. Teague at (301) 427-1190.

Sincerely yours,

Carl A. Larson, Ph.D.
Director, Division of Surgical
and Rehabilitation Devices
Office of Device Evaluation
Center for Devices and
Radiological Health

Enclosure

PLASTAFIL, INC.

P. O. Box 268
Belcher. Louisiana 71004

February 21, 1991

PMA Document Mail Center (HFZ-4C1)
Center for Devices and Radiological Health
Food and Drug Administration
1390 Piccard Frive
ANDREW A. MARINO. PH. D.
Rocl:ville, MD 20850

RE: IDE NUMBER G820122/S13
Plastafil CFS* Carbon Fiber System
Dear Sirs,
This letter and its apfendices are in response to FDA's letter dated November 21, 1990. My delay in resfonse was occasioned by the need for me to reply to FDA's letter dated June 22,1000 requesting further information regarding Plastafil's Premarket Approval application (FMA). I have responded to FDA's letter dated June 22,1990 , and a copy of that response together with its enclosures are included with this letter. Below, I provide specific replies to each of the points raised in FDA's letter dated November 21, 1990; where the points raised were identical to those raised in FDA's previous lettfr, I have rrovided the same resporse here that I did previously.

In what follows, "I" refers to both Plastafil, which is the sponsor of the CFS" Carbon Fiber System, and to me personally. "PMA" refers to Plastafil's Pre-Market Approval application listed above. "JDE" refers to plastafil's investigational device exemption $\#$ G820122/S13. "Device" refers to either the portion of the CFS" Carbon Fiber System consisting of the carton-fiber implant itself, or to the carbon-fiber implant together with the fixation devices, whichever is appropriate in the circumstances in which the term is used. "Cases" refers to patients who received the Device; "Controls" refers to patients who received standard therapy. "Guidance Document" refers to Guidance Document for the Preparation of Investigational Device Exemptions and Pre-Market Approval Applicaticns for Intra-Articular Prosthetic Knee Ligament Devices, Division of Surgical and Rehabilitation Devices, Center for Devices and Radiological Health, USFDA, 1987.

In each instance, FDA's comment is reproduced verbatim, followed by Plastafil's reply.

FDA: Page 1, Paragraph 1: "It appears from the study design reported in the PMA that several changes and deviations from the original protocol occurred in violation of 21 . CFR Part. $812.35(a)$. Proper compliance to the investigational plan is the responsibility of the sponsor as described in Fart 212.46 . For instance, there is no explanation why you include an open phase with no control fatierts when there was no provision for such a trial in the original design and also there is no explanation why the randomization scheme was changed to result in a 2:2 ratio of device treated to controls instead of $1: 1$ ratio.

In addition, implarts were used in nine patients which had injuries only to the posterior cruciate ligament which was not one of the subgroups approved for this study.

PLASTAFIL REPIY: The aforementioned section requires: "a statement that each study was conducted in compliance with Part 812 or Part 813 concerning sponsors of clirical investigations and clinical investigators, or if the study was not conducted in compliance with those regulations, a brief statement of the reason for the noncompliance." The term "study" is not defined in Part 814, but from 21 CFR 814.20 (b)(6)(ii) it seems that the term refers to clirical investigations involving human subjects with the Device, whether or not conducted under an IRF. Plastafil's clinical investigation under the IDE was conducted in compliance with Part 812. It was also conducted in compliance with the Institutional Review Board regulations in Part 56, and ir compliance with the informed consent requlations in Part 50.

The clinical studies conducted by Drs. Mare, Demmer, Botha, and Penny reportcd in the PMA application were not conducted in compliance with the Institutional Review Board regulations (Part 56), the informed consent requlations (Part 50), or requlaticns concerning sponsors of clinical investigations and clinical investigators (Part 812). The reason for noncompliance was that the investigators had no leqal or other obligation to comply with the aforenentioned Parts. This information has previously beer furrished (4E-1*, 2; 4F-21). In trief, the surgeons, each of whom is a citizen of a foreign country, provided the results of their clinical studies beceuse the FLA staff felt that the information would be useful with regard to evaluating Plastafil's PMA, notwithstanding the fact that it was not gererated under Plastafil's JFF.

Staff raises the issues of (1) an open phase with no control patients; (2) the use of the implant in patients who had injuries only to the posterior cruciote ligament; and (3) the use of the $3: 2$ ratio, not a $1: 1$ ratio. I will reply to the first two issues together, and the third issue separately.

Non-IDE Nevice Use. In mid-1983, Fr. John Albright expressed a desire to use the 「evice in some patients who had an injured posterior cruciate ligament or who had a totally dislocated knee (salvage patients). During the summer of 1983 I presented Tr. Albright's proposals to FRA staff during several tel ephone conversations. I explained Plastafil's willingness to provide the Device, and Dr. Albright's willingness to undertake the responsibility for its use. Plastafil's concern was that our actions might be construed as marketing the Revice in violation of Section 301 of the Food, Trug and Cosmetic Act (FI\&C) -- which was not the case. I asked: (1) Did the proposed uses amount to reauests for approval of a modification of the ILE so as to include two additioral study groups; (2) for the purposes of the proposed uses, was the Device a Custom Device withir Section 520(b) of the FD\&C Act and therefore exempt from Section 515? Initially, it was suggested that the proposal amount to the inclusion of additional study groups, and that some formal steps were needed for the inclusion to be valid. But I pointed out: (1) The Device was

[^2]not offered for commercial distribution to Tr . John Albright (or anybody else). (2) The Device was used to meet the unique needs of Dr. Albright's patients; Plastafil neither requested nor received a list of inclusion or exclusion criteria for use of the Device, nor did Plastafil make any recommendations regardire either criteria. The revice was used in particular patients whose clinical and anatomical features were, in Dr. Albright's discretion, suitable for use of the Fevice. (3) The revice was not comercially distributed, and no fee was charged for the Device. (4) Plastafil was not regularly engaged in providing Custom Devices, and that we would not do so for any individual other than Vr. John Albright. When Plastafil was satisfied that its actions would net be viewed as commercial distribution of an unlicensed medical device in irterstate commerce, it provided the revices to 「r. Albright to use as he thought appropriate. Plastafil never advocated the Device for use in salvage frocedures because our rationale for the use of the Device did not extend to such an application; furthermore, we never advocated use of the Device for isolated FCI injuries because we had no intention of conductirg a study that would directly test that hypothesis. Despite these facts, Plastafil made no attempt to impose its judgment on Pr. Albright, and made the Cevice available to him at his request, based on our respect for his efforts and his judgment.

21 CFR Part 812.46 describes the sporsor's resporsibility in the situation in which an investigator fails to comply with the investigational plan. No investigator in Plastafil's ILF clinical study failed to comply with the investigational plan because each investigator, insofar as I am aware, substantially adhered to the investigational plan with regard to all its pertinent and substantive aspects including entry criteria, randomizatior, surgical procedures employed, handing and treatment of the device, and conduct of follow-up examinations.

In summary, for the abovementioned reasons, it is a mischaracterization of Plastafil's activities to assert that the issues raised were "deviations from the original protocol ... in violation of 21 CFR Part 812.35."
The first issue related to a use of the Revice that was thoroughly discussed with Staff at the time the use was carried out, and which was justified ty considerations not pertinent to the IIE. The second issue related to an appropriate use of the revice that did not involve the hypotheses considered in the ILF study.

3:2 Allocation of Patients. In the JTE we said: "The randomization scheme used to allocate patients to treatment groups will result in approximately one experimental for each control" (emphasis added). The question posed by Staff therefore amounts to whether our use of a patient ratio of $1.5: 1$, and not $1: 1$ is a "change" within the meaning of the applicable version of Section 812.35. We concluded at the inception of the study that it was not such a change and that the use of $1.5: 1$ rather than 1:1 was scientifically desirable and justified. There were several bases for our conclusions.

Not a change within the meaning of Section 812.35. On January 18, 1990 the FLA promulgated a final rule regardirg Section 812.35 (supplemental application), effective July 16,1080 (45 FR 3755) that provided in pertinent part: "(a) Changes in Investigational Plan. A sponsor shall (1)
submit to FDA a supplemental investigation if the sponsor or an investigator proposes a change in the investigational plan that may affect its scientific soundness or the rights, safety, or welfare of subjects, and (2) obtain IRB and FDA approval of the change before implementation...."

In adopting this final rule $F P A$ made it clear that it was intended to apply only to changes affecting the safety of subjects or the validity of the investigation: "Supplemental applications are required only for the addition of new institutions to an investigation and for changes in the investigational plan that may affect the scientific soundness of the study or the rights, safety, or welfare of subjects" (45 FR 3745).

On January 27, 1981 the $F \Gamma A$ adopted an amendment to fection 812.35 , effective July 27, 1981 which read in pertinent part: "(a) Changes in Investigational Plan. A sponsor shall: (1) Submit to FRA a supflemental investigation if the sponsor or an investigator proposes a change in the investigational plan and (2) obtain IRB approval (see section 56.110(b)) and FDA approval of the change before implementation."

FDA again amended this Section, effective April 12, 1983 (48 FR 15621) to provide, in pertinent part: "(a) Changes in Investigational Flan. A sponsor shall: (1) Submit to FDA a supplemental investigation if the sponsor or an investigator proposes a change in the investigational plan that may affect its scientific soundness or the rights, safety, or welfare of subjects and (2) obtain FDA approval of any such change and IRB (institutional review board) approval when the change involves the rights, safety, or welfare of subjects (see fections 56.110 and 56.111), before implementation."

The Section was modified again (50 FR 25909, June 24, 1985; 50 FR 28932, July 17, 1985) and presently reads as follows: "(a) Changes in Investigational Plan. A sponsor shall: (1) Submit to FDA a supplemental investigation if the sponsor or an investigator proposes a change in the investigational plan that may affect its scientific soundness or the rights, safety, or welfare of subjects and (2) obtain FPA approval under Section 812.30(a) of any such change, and IRB approval when the change involves the rights, safety, or welfare of subjects (see Sections 56.110 and 56.111), before implementation...."

Even if use of a patient ratio of 1.5:1 were to be considered a "change", the only asfect of the study to which it could reasonably be viewed as pertinent is that of the study's scientific soundness. That is, use of this ratio has no direct lirk with the ouestion whether the device in any particular patient is more or less safe, or more or less efficacious. Thus, if there were a "change" within the meaning of Section 812.35 , it affected "scientific soundness". But our IDF study was authorized by letter dated March 4, 1983, and the version of Section 812.35 that was in effect as of that date specifically removed "scientific soundness" as a "cherge" that must be submitted to FFA for prior approval. As a consequence of these considerations, I interpreted the law to mean that even if there were a "chenge", it was not a change that recuired a formal supplenental application.

Affirmative reasons for the choice of the $1.5: 1$ ratio. Assume that two surgical therapies are available to treat a particular disease, and that both procedures are performed routinely but that there is no scientific evidence to indicate which procedure is superior. The uncertainty could be resolved by randomizing subjects to the two procedures, and performing suitable follow-up determinations. If the investigating surgeon routinely performed both procedures, the study would contain no a friori bias regarding degree of surgical skill. However, if the patients randomized to one arm were operated on by a surgecn experienced in that procedure, and the surgeon had no experience with the second procedure, then any difference between the two patient groups might be due to either the relative merits of the procedures, or the relative skills of the surgeon. A similar difficulty in experimental design occurs whenever a new therapy is to be tested against a standard therapy; in such instances, surgeons have experience with one procedure, but not the new procedure, and consequently any measured decrement in efficacy in the new procedure might be due to relative inexperience. Cne acceptable strategy to overcome this difficulty is to provide, in advance, that the number of subjects receiving the rew treatment will be greater than those who receive the standard treatment. The rationale is that the relative inexperience will be averaged over a larger subject population than would otherwise have been the case, thereby lessening the impact of this confounding variable on mean performance. Based on this consideration, and after reviewing other clinical studies in which a similar rationale was invoked, we chose to conduct this study at a case:control ratio of 1.5:1.

FDA: Page 1, Paragraph 2: "Additional information is needed on the complications reported. The incidence of synovitis, extra-articular infections, intra and extra-articular failures, graft laxity, septic arthritis, and presence of carbon particles are not reported. Although you state that these occurred at low levels, the variability in the freauency of follow-up visits among patients may have made it impossible to detect the actual incidence of complications."

PLASTAFIL RFPL: The listed clinical states are not defined in the IPF, and I do not understand how the absence of information regarding undefined clinical states can be considered a violation of the CFR. I cannot provide specific information unless the reauests are fosed using terms that have a meaning within the context of our study -- each of the listed terms have no such specific meaning because they are judgments, not dependert variables.

The phrasing of Staff's comment creates an irresolvable conflict between the meaning of a scientific term and the pattern of clinical practice. "Inciderce" means frequency of occurrence of an event in a population within a particular time interval. Carbon fibers are not radio-opaque, and the presence of carbon-fiber debris (which is what I assume to be the issue raised here by Staff) cannot be determined unless the patient is arthroscoped (and even that may not be sufficient). It is not acceptable to conduct routine arthroscopic examinations in the absence of symptomato: ogy, and in our IDE we expressed no intention to do so. Trus, it is impossible for me to report the incidence of carbon particles.

In alleging the deficiency, I think there has been a failure to recognize the change in the nature of decision-making within the surgical specialties which the FDA, itself, spearbeaded. The public record shows that sponsors routinely presented the results of uncontrolled clinical studies in which clinical endpoints were evaluated using sutiective criteria: Patients did "excellent", "good", or "poor", and they had "graft laxity", "synovitis", and they were "satisfied" or "unsatisfied." Since it is the practitioner that is the ultimate consumer of the research, the attempt to express both the design of the study and its results in clinical terms makes eminently good sense. The drawback in this approach is that it does not provide an objective basis for the degree of confidence that one may place in the conclusion of the study.

There is another procedure for conducting a clinical study. Groups representrtive of patients with a specific pathology are treated using alternative therapies, and the results are compared using acceptable clinical and statistical methods, stipulated in advance. These methods must be clinical, otherwise the study has no meaning; they must be statistical, otherwise the study is not superior to the alternative methodology. The basic process for implementing this procedure is to focus on a clinical state, define it in terms of a symptomatology, ascertain the grades or levels of the symptomatology, create a realistic a priori classification scheme, and firally, determine whether treatment affects distribution within the scheme (by analyzing the mean or median of the scorecharacterizing the symptom used to define the clinical state, or the frequency distribution of patients in the various states as a function of treatment). This procedure removes (or goes a long way toward removing) the objection that the conclusion of a clinical study using the anecdotal method was too subjective. The price paid when the scientific method is used is that some clinical states, while remaining of crucial importance with regard to clinical judgment, fatient ranagement, diagnosis, and treatment, simply have no well-defined meaning within the decision-making proces shertin the investigaror seeks to ascertain the superior therapy. In this process, the clinical state bas been replaced by the sum total of the symptoms deemed pertinent.

FIA has repeatedly made it clear that it prefers ard expects well-designed clinical studies involving appropriate control groups assessed with regard to well-defined obiective endpoints using appropriate statistical methodology. This is the kind of study Plastafil promised to perform when the ILE was approved in 1983, and it is the kind of study that Plastafil did, in fact, perform. Plastafil did not perform an anecdotal study, and therefore we cannot provide anecdotal evidence.
(1) With respect to "synovitis". Synovitis is a clinical condition involving inflammation of the synovial lining of the joint; its presence or absence (except in a florid condition) is a matter of clinical judgment. I am unaware of any methodology by which the presence or absence of the pathology can be uniquely determined. Moreover, the incidence of synovitis itself is not a meaningful number because, however the condition may actually be defired, it is expected to occur in all patients to some extent. The pertinent question is whether the incidence of synovitis in the Cases (patients who received carbon fibers) differs from that in the Controls (patients who received standard therapy). The best response
consists in characterizing the Cases and Controls with reqard to parameters that were accepted frior to the study as beirg characteristic of the pathology. This was done in Volume 4F, Tables 9-14 for pain, and Tables 21-26 for swelling for all the patients in the study. The format employed in the preparation of the Tatles was that specified in the cuidance Document. A pertinent response to Staff's ouestion is also contained in the paramet fr symptcms defined in the ITF. The data from our study in the format SYMPTOMS is given in Enclosure 1 with this response.
(2) With respect to extra-articular infections. On page 4r-17 we reported "Mark Roobar (ron-randomized study, ISU) experienced pain and tenderness in the area of the toggle, and it was removed in his physician's office under local anesthesia. Bryan Cooper (LSU) underwent removal of both medial bollards after he developed an abscess two weeks postoperatively." These wer ϵ the only extra-articular infections (or possible infections) noted in our study.
(3) Intra-articular failures. I am unable to provide a definitive reply because I do not know what Staff means by "failures". If "failure" means a situation in which an initial treatment did not satisfactorily resolve an initial complaint, resulting in a second procedure for the same complaint, then the treatment failures in the Plastafil study were described on pages $4 \Gamma-15$ and $4 \Gamma-16$. There were four intra-articular treatment failures in the controls and four intra-articular treatment failures in the carbon-fiber patients in the chronic category; there were no other treatment failures.
(4) With regard to graft laxity. I am unable to provide a definitive reply because I do not know what Staff means by "graft laxity." Moreover, I do not understand the pertinence of a request for information regarding graft laxity because we have performed a controlled clinical study; consequently, no dependent variable has specific meaning except with relaticn to the magnitude of the corresponding variable in the control group. We provided information regarding numerous clinical tests and signs (sef Tables 57-68, 103-107) that are pertinent to laxity. The tables were prepared according to the "distritution of scores for each objective item from Appendix 6 and subjective item from Appendix 5 for the entire population, at each time point of data collection according to the format of Appendix $1 l^{\prime \prime}$ as requirfd in the Cuidance rocument. The data from our study in the format STABILITY is given in Enclosure 1 with this letter.
(5) Septic arthritis. We think none, but the limitations and ambiguities described ir our response to the four previous clinical states applies with equal force here.
(6) Presence of carbon fibers. Ve were unable to report the fact or extent of presence of carbon fibers in the knee joint in any scientifically objective manner. Such a determination would have reouired arthroscopic surgery, tissue biopsy, and a validated quantitative procedure for analyzing the biopsy specimens. Such a strateqy was not proposed in our IDE, and would probably have been ethically unacceptable. The objective information that is available which bears on the issue, and which may be evaluated to make judgments about the existence of carbon fibers in the
joint consists of (J) observations reqarding patient symptors (under the hypothesis that a significant presence of carbon-fiber debris would have produced symptoms); (2) an analysis of the pertinent animal studies regarding the issue of carbon-fiber debris; and (3) the arthroscopic examinations made by Ir . Penny in a series of patients who agreed to be arthroscoped. This information has previously been presented to FFA, and we believe it supports the conclusior that trace presence of carbon fibers may be expected in the joint, but the debris does not have functional significarce. I know of no countervailing evidence nor any objective method by which the question might be more adequately assessed.

FDA: Page 2, paragraph 3: "Patient accountability is extremely poor. It is not possible to identify all patients entered in tre study who remained through its completion. A flow chart showing all patient groups from the initiation of the study through its termination would clarify this. All withdrawals, losses, formation of new sub-groups should be clearly indicated in the chart."

PIASTAFII REPLY: I am unable to provide a definitive reply because I do not know what Staff means by "completion", "termination", "withdrawal", "losses". None of these terms are defined in our study; conseouently there is no unambiguous method to determine whether they occurred, or wher.

We dealt with human beings who had their own likes, dislikes, priorities, and ambitions. When a patient chose not to return for a follow-up examiration, I lacked both the leqal and moral authority to require compliance. When faced with this difficulty, which occurred frequently, we accepted the patient's decision, and tried again later. No patient (with the exception discussed below) is "lost" or "terminated", and no patient "completes" the study ir any absolute sense. It cannot be assumed that all subjects dutifully appear when requested to do so by their doctor, because this did not occur ir the real world in which we performed our study. Indeed, any study performed on subjects who appear on command is probably worthless with regard to establishing inferences for the general population. Cur study centers were chosen to provide a representative patient sample; frequently, the patients did not conform to a schedule that suited Plastafil. Banal as it may sound, patients do not respond to a physician's request like automatons, and implementation of the federal regulatory scheme for medical devices must recognize this fact. As difficult as the froblem was at one year postoperative, it became increasingly more difficult as time passed.

Staff's assertion "patient accountability is extremely poor" is factually erroneous, ard it is my hope that the error will be apparent when staff evaluates our data in the format provided in this letter (Fnclosure 1). The facts will show that our study is the best study involving an orthopaedic implant that has yet been performed and reported, and is probably near the thecretical limit on patient accountability for a study involving a cross-section of the population. The major difficulties I faced in reporting cur data occurred because the JFF, the Guidance Nocument, and the categories defined in FDA's deficiency letters frequently conflict with ore another.

FDA: Fage 2, Paragraph 4, Sentence 1: "Patient follow-up information is incomplete and confusing as reported."

PLASTAFIL REPLY: All follow-up information obtained during the course of this study has been cumarized in the PMA; a copy of all case reports is included with this letter. Not every patient was followed at 3, 6, 9, and 12 months post-operatively for the reason that was described in the preceding Replies. The conseauences of this fact are discussed below. The format of the follow-up information provided in the PMA was mandated by the Guidance Document -- it was not a format that we chose, nor a format that we proposed in the IDE. Confusion engendered by the preparation of data in the Guidance-Document format is not reasonably attributable to shortcomings on the part of Plastafil.

Plans describing (1) the format in which data would te presented for scientific evaluation, and (2) the statistical methodology that would be employed in evaluating the data were contained in the approved ITE. Below, I present: (1) the pertinent parts of the approved plan dealing with the format of the data ard the decisional process to be employed in evaluating device efficacy; (2) the data obtained pursuant to this plan (Enclosures 1 and 2); (3) an analysis of pertinent changes in the implementation of this plan (compared with the plan as originally approved); and (4) the results of analysis of the data performed according to the approved methodology.
(1) The Approved Plan. The plan that Plastafil proposed for evaluating the data from the clinical study is contained in pages $13-15$ in the TrF. The part of the approved plan dealing with the data format and the decisional process to be employed in evaluating device efficacy is:

Data Manag ement

Efficacy: The success of the carbon-fiber treatment will be determined on the basis of statistical analysis of the results of orthopaedic Examinations of the patients. Each patient will be evaluated with regard to the five categories listed in Table 3, using the Forms contained in APPENDIX A of this Protocol. The categories will be weighted, as shown in Table 3, to give the greatest weight to Stability (30%), equal rights to Symptoms, Function, and Patient's Evaluation (20% to each cateqory), and the least to Deformity (10%).

Data for Symptoms and Function will be enter by the Investigator (or an appropriate assistant) at the time of the Crthopaedic Examination based on answers provided by the patient. A maximum total of 46 and 65 points respectively can be achieved in the two categories; as will be the case for all categories shown in Table 3, the actual values measured will be adjusted, using the appropriate scale factors, to obtain the desired weighting of each category.
...
Let $O(t)$ be the orthopaedic status of the patient at time $t . ~ O(t)$ is defined to be the sum of the weighted scores from each of the categories

$$
O(t)=S s+F f+\Gamma d+X x+Y y
$$

Where S, F, Γ, X, and Y, are the raw scores for each category as defined in Table 3, and the lower case symbols are the appropriate scale factors as defined in Table 3. For a patient with no knee disability, $O(t)=100$.
$O(t)$ will be measured at the time of the pre-operative visit (0 (o)), and at 3-12 months post-operative. A Healing Index, HI, may he defined as the ratio of the patient's status at any particular time, compared to that found at the pre-operative visit.

$$
H I=O(t) / C(0), t=3,6,0,12 \text { months. }
$$

Table 3. Categories to be Evaluatad-During Orthopaedic Exaniantion, and Assigned Weight.

HI(t) will be computed in the manner described above for each patient in this study, and the values from the carbon-fiber patients will be compared, usirg the independent t-test, at $3,6,9$, and 12 ronths with those found from the corresponding control group.
(2) The rata. The data collected in this study is presented in Fnclosure lon a patient-by-patient basis prepared according to the format described above. Enclosure 2 consists of averages obtained using the data in Enclosure]. Enclosure 2, fage 1, cortains the average scores for each orthopaedic category defined in the ILF as a dependent variable, as assessed pre-cperatively. Page 2 contains comparable average values ortained using all data in Enclosure 1 that was obtained more than 24 months post-operatively; also indicated or fage 2 is the number of patients who contributed to the average. For example, there were 43 patients in the chroric category that received carbon fibers, and we had data regarding deformity on 41 patients that were at least 24 months post-operative; the mear Peformity score was 2 C. 6 , compared with 19.6 in the control group (for which data was obtained on 33 of the 36 patients enrolled). The
average follow-up times for each of the orthopaedic categories is listed on page 3. Page 4 of Enclosure 2 contains comparable information regarding the non-rardomized group.
(3) The Changes. The decisional process itself is an essential part of the investigational plan. Wholesale or arbitrary a posteriori changes in the investigational plan would make it impossible to perform valid scientific studies, but changes in some aspects of design, conduct, or data evaluation may be necessitated by changed circumstances or unforeseen events. If so, the question whether the experimental hypotheses can still validly be assessed is raised. As discussed previously, not all patients were examined at $3,6,9$, and 12 months post-operatively, because some patients refused to afpear for scheduled clinical appointments. If a patient chose not to submit to a clinical examination at a particular time or within a particular time interval, there existed no legal nor moral force that could require compliance. There probably was not a single instance in which a patient was not requested to appear for a timed follow-up at $3,6,9$, and 12 months post-operatively. Nevertheless, this situation constituted a change from the original plan.

What are the scientific consequences of the absence of data at the timed intervals? If a patient failed to appear at a timed interval, and also failed to appear at all subsequent times, the patient would be lost to follow-up. Every patient lost to follow-up compromises, to some extent, the confiderce that one might have in decisions based on the study data, because of the possibility of bias associated with decision-making using only part of the sample. The difficulty is that the investigator could not be certain that the patients still available for follow-up reflected or characterized those that were unavailable. Thus, the existence of patients lost to followmup inexorably injects uncertainty into the decisional process, thereby weakening any conclusion.

If no patient is lost to follow-up -- that is, if there is some data for every patient, even if the data is not obtained at the same post-operative time poirt for each patient, then the potential bias associated with lost patients does not exist. With only a few exceptions (discussed at lergth in the PMA), this situation applies to the plastafil IPE study. That is, we have follow-up data for almost every patient (Enclosure l). Since follow-up data beyond 24 months post-operatively was obtained for essentially every patient enrolled in the study, the question of potential bias due to lost patients becomes irrel evant and the performance of the Case and Control groups can be formally evaluated using appropriate statistical methods.
(4) Lata Analysis. The healing index in the Cases in the chronic category (1.60 ± 0.57, page 2 of Enclosure 2) did not differ significantly from the Control value (1.74 ± 0.76) using the unpaired t test. The healing index in the Cases in the acute category (3.24 ± 1.50) did not differ significantly from the Control value (2.7 \pm. 7 (o) usirg the unpaired t test.

FPA: Page 2, Paragraph 4, Sentence 2: "The 'random-sampling model' suggested is not acceptable."

PLASTAFIL REPLY: The tasic value of a statistical approach is that, under the appropriate conditions, data obtained from a sample may be used to characterize the parent population. Indeed, in our PMA we urged that data taken on fewer than 150 patients could be used to make inferences regarding efficacy in a population (those having injured anterior cruciate ligaments) of more than 150,000/year. As established by Fisher (R.A. Fisher: J. Ministry of Agriculture of Gr. Prit. 33:503-513, 1926) and endorsed by subsequent authorities (W.J. Dixon and F.J. Massey: Introduction to Statistical Analysis, Lth Ed., McGraw-Hill: New York, 1983; B.J. Winner: Statistical Principles and Experimental Design, 2nd Ed., McGraw-Fill: New York, 1962), the validity of the inferential process depends upon establishing that the sample is representative of the population. The method of randomly choosing subjects is one process by which "representativeness" is assured. Surely if 150 subjects can characterize $15 \mathrm{C}, 0 \mathrm{O} 0$ subjects, then 15 subiects can (under appropriate circumstances) characterize 30 subjects. It would therefore be inconsistent to hold that, regardless of all other considerations, it is "not acceptable" to rely on a sample of a sample for the purposes of categorizing the latter; such an assertion is unscientific, and lacks both authority and a logical basis. Not only is the random-sampling model proper, it is prolably the only acceptable model tecause it alone permits a clinical study on the true population -- all patients (not merely those whose socioeconomic, cultural, and medical backgrounds are such that they are certain to dutifully obey the orders of a physician regarding follow-up).

The pertinent question posed by a sample-of-a-sample methodology involves an a priori determination of the probability of occurrence of error. For our PMA, however, this consideration is not important because the sample-of-a-sample methodology is not part of the approved a priori decisional process.

FDA: Page 2, Paragraph 4, Sentences 3 and 4: "The information for each parameter should te presented in life tables to include data for each time point as specified in the study protocol (that is, $0,3,6,9,12$, and 24 months) plus any length of time beyond two years. The intervals should be sel ected in such a way that each patient is represented once in each int erval."

PLASTAFIL REPLY: I reject the notions that (1) a study exhibiting rigid chronological regularity is possible in a representative patient group, and (2) chronological regularity is a sine qua non of statistical validity. If Staff disagrees I request thet FTA take whatever definitive and final steps that are necessarily entailed by its view, because it is neither necessary nor possible for us to provide data at each of the specified time points.

A life table is a table showing the proportion of a group of patients with a chronic disease that survive beyond a specific time chosen as the initial point of observation (J.A. Ingelfinger, F. Mosteller, L.A. Thibodeau and J.H. Ware: Biostatistics in Clinical Medicine, 2nd Ed., Macmillan: New York, 1987). Life tables may be used to evaluate survival as a function of differing treatments for an underlying disease (N. Fng. J. Med. 311:1333-1339, 1984). I have been unable to find any sciertific authority describirg the use of life tables for evaluating the efficacy of an implant, compared with standard therapy. Death is not a useful
endpoint, and it is unclear what Staff has in mind as a substitute. I can find no indication of either a format or a method of decision using "life tables" in the irformation disclosed by FDA under the FOI laws regarding previous ligament devices that were the subject of PMAs. I request that Staff specifically apprise me of (1) what it understands by "a life table" in the context of our study; (2) a scientific or legal authority wher in the method of computation of the life table acceptable to FDA is performed; (3) scientific or legal authority by which life tables for the Cases and Controls are to be compared for the purpose of determining any differences.

If Staff is seeking information regarding treatment failures, this information has freviously been provided ($4 \mathrm{~F}-15$).

FDA: Page 2, Paragraph 4, Sentence 5: "The following information should be included in such a table: (a) patients in each category; (b) patients lost to follow-up; (c) patients due for a follow-up visit; (d) complications; (e) withdrawals; (f) deaths; (g) rissing data."

PLASTAFII REPIY: (a) The fatients in each category are listed in Table 1, Volume 4D; the Table lists the name, category, class, grade, and group of each patient. (b) I am unable to provide a definitive response to Staff's request because I do not understand what is meant by the term "lost to follow-up". If Staff means petients regarding whom Plastafil has irreversibly decided that no further follow-up can be obtained, our answer is none. If Staff means patients regarding whom follow-up information directly bearing on the decisional processes regarding safety and efficacy tave received no contribution, our reply is contained in detail in Appendix 3, Volume 4D "Accounting for Patients for which the Longest Follow-up was Fewer than 24 Months"). (c) All patients are due for a follow-up visit because we are attempting to follow the group on a permanent tasis. (d) I am unatle to provide a definitive response because I do not understand what Staff means by "complications." If Staff means complications that clearly involved the revice, the two such instances that occurred during the study are described on page 4D-17. If the question refers to information obtained by investipators during follow-up visits ("Complications/Adverse Reactions" section of the "Follow-up Fvaluation" form), all such replies received during this study are listed ir Enclosure 3. The original data forms are contained in the case records which accompany this letter. (e) None. (f) William Hall was killed in an automobile accident on February 1, 1984 (4 D , Appendix 3). (g) I am unable to respond because I do not understand what Staff means by "missing data." If by this term Staff means a list of follow-ups from which it may be determined when data was not obtained at 3,6 , 9 , and 12 months post-operatively, this information is described in Enclosure 1.

Also on page 2 of its letter, Staff wrote "a patient is considered lost to follow-up beginning at the time when he/she first missed a visit and the patient did not later have 2 evaluation after that time period." This position is inadequate to define the notion of lost to follow-up because "later" is undefined; it is therefore not possible to determine whether the event has
occurred. In my judgment, a patient is not lost in any absolute sense until the patient either dies or obtains a court order enjoining plastafil from attempting to obtain a follow-up examination.

Andrew A. Mario, Pho.

$[$
Γ
$[$

1
AAM: ab

T
1
\prod^{∞}

난 12199

Andrew A. Marino, Ph.D. plastafil, Inc. P.O. Box 268 Belcher, Louisiana 71004

RE: P900020
Plastafil CFS ${ }^{\text {TM }}$ (Cisbon Fiber System)
Received: February 25, 1991

Dear Dr. Marino:

The Center for Devices and Radiological Health (CDRH) of the Food and Drug Administration (FDA) has completed an initial review of your premarket approval application (PMA) and your response to FDA's June 22, 1990 non-filing letter. We regret to inform you that your application remains incomplete and cannot be filed at this time. This means that the PMA will not undergo further review by CDRH until the deficiencies listed below are corrected or adequate justification for the omission of any item is submitted.

In order for the PMA to be filed, you must address the following:

1. The following information on complications must be provided for each time interval (post-op, 3, 6, 9, 12, 24, and 24+ months) following surgery:
a. the incidence of synovitis. If synovitis is present in all patients as you claim, then those which experienced a severe or chronic condition should be listed separately from those who experienced a mild condition;
b. the incidence of intra-articular failures. This includes incidences where the prosthesis ruptured for any reason which required its removal;
c. the incidence of graft laxity. This includes incidences where excess laxity in the graft required surgery to correct or as according to the "Guidance Document for the Preparation of Investigational Device Exemptions and Premarket Approval Applications for Intra-Articular Posthetic Knee Ligament Devices", a post-surgical Lachman score which remains greater than or equal to 2 or in your corresponding test, remained in class 3 or higher in the Anterior Drawer -30° test; and
Page 2 - Dr. Andrew A. Marino
d. the incidence of carbon fiber particles being observed intra-articularly during arthroscopic examination or revision surgery due to prosthesis rupture or other concomitant complications.
2. You state that you cannot provide life table summaries for your study because data for the specific time points are not available. It is the responsibility of the study monitor to take measures to assure that there is compliance with the study protocol. The results of a particular study may show statistically significant diffarences between gruups, but it must also be shown that the data were derived from a well designed, well implemented study. Non-compliance with the study protocol cannot be ignored and compliance is critical for the interpretation of the results and an assessement of their reliability. Therefore, you must provide summary life tables for each parameter (i.e., anterior drawer, Lachman test, etc.). The following table must be completed for patients in the randomized portion of the study (controls and treated patients separately) and for the non-randomized portion of the study.

post-op	Interval of Time Post-Treatment (Months)						48	60
	3	6	9	12	24	36		
Number of								
Patients in Each								
Score Category								
Missed Visits								
Lost to follow-up								
Deaths								
Revisions								
Withdrawals								
Incomplete data								
Complications								

Failures

Page 3 - Dr. Andrew A. Marino
You must also define the limits selected for each time interval and designate with NA when there is no available data at a specific time point. Each interval can have only one evaluation per patient. Since patients, according the study protocol, were to be followed for 1 year after surgery, missed visits need to be considered only within the first year.
3. It is difficult to assess the composition of the study population in terms of the patient groups at any given time. You must provide a flow chart showing the original sample population and all groups through the completion of the study as in the ífilowing exampie ithe nomenciacure for these groups will be specific for your study and is not limited to the groups shown below):

4. You must discuss how the possibility of bias in your randomization scheme was avoided. In addition, you must explain the rationale for using different randomization methods and p values at each one of the three centers.
5. The total strength of the Carbon Fiber System is reported to be 289 N which is well below that of other artificial ligament designs and of the natural human ligament. The suggestion that the strength of the carbon fiber system is augmented by tissue ingrowth to be within the range of the natural ligament is not supported by the animal test data. According to the goat model you presented, the ultimate tensile strength achieved after 18 months is on? 2 25\% of the natural ACL of the goat. It is, therefore, necessary that you demonstrate that the Carbon Fiber System can withstand mechanical testing in bending fatigue and tensile fatigue with load levels comparable to physiologic conditions. If tissue ingrowth is to be considered a factor in significantly improving the strength of this ligament system, animal test data must be provided to support this claim. In addition, you must perform abrasion testing and creep testing with the ligament in a similar position as when it is implanted. The carbon particles formed from the abrasion testing must be quantified and compared to what has been seen in vivo.
6. Your justification for the omission of complete information in the Manufacturing Section to validate the sterilization process for this device and to determine whether this process adversely affects the device's physical and mechanical properties is inadequate. You must provide complete sterilization information which includes:

Page 4 - Dr. Andrew A. Marino
a. the sterility assurance level of the device for the radiation sterilization process, the radiation dose, and the radiation source;
b. the results of dose mapping including a diagram of the product loading pattern and a description of the dosimeters; and controls for routine monitoring of the sterilization cycle;
c. the names and contracts with the sterilization facilities; and your pian for collecting vaildation data and the data themselves; and
d. complete information concerning the test methods and frequency for bioburden and pyrogenicity testing.

For guidance concerning the types of sterilization information to be submitted, you should refer to Chapters 61, 71, 85, 151, 1035, and 1211 of The United States Pharmacopeia XXII, the Association for the Advancement of Medical Instrumentation Standard Process Control Guidelines for Gamma Radiation Sterilization of Medical Devices, and the enclosure which is FDA's Guideline on Validation of the Itimulus Amoebocyte Lysate Test as an End-Product Endotoxin Test for Human and Animal Parenteral Drugs, Biological Products and Medical Devices.

As provided by 21 CFR 814.42 (d), you may resubmit the PMA with the additional information necessary to correct the above deficiencies (O) you may request in writing within 10 working days of your receipt of this letter an informal conference with the Director of the Office of Device Evaluation (ODE) to review the decision not to file the PMA. Any review will be based only on information within the existing PMA and will be limited to a reconsideration as to whether any of the not filing eriteria. in 22 CFP 324.42 (3) appiy. The Director of ODE will hold this informal conference within 10 working days of receipt of the request and will render a decision on filing within 5 working days after the informal conference. If, after the informal conference, FDA accepts the PMA for filing, the filing date will be the date of the decision to accept the PMA for filing. If the Director of ODE does not reverse this decision not to file the PMA, the applicant may request reconsideration of the decision from the CDRH Director.

A request for reconsideration by the Director of CDRH must be
submitted in writing within 30 working days of your receipt of a
denial for filing from the Director of ODE. The request must
contain written descriptions of your positions on the issues
critical to filing. The Director of CDRH will render a written
decision within 60 days of receipt of your request. If, after the
review by the Director of CDRH, FDA accepts the PMA for filing, the

Page 5 - Dr. Andrew A. Marino
filing date will be the date of the decision to accept the PMA for filing. If, after his review, the Director of CDRH does not reverse this decision not to file, that denial constitutes final administrative action for the purpose of judicial review.

The following additional deficiencies were noted in this initial review. While they did not directly relate to our decision to not file your PMA, you should make every effort to address them in your next amendment:

1. You must provide historical and literature support for what is considered a successful ligament reconstruction procedure in terms of the parameters used in your study.
2. You must submit justification for the large effect size difference (0.55) which is used to calculate the sample sizes.
3. You must provide a summary of complication rates for each investigator, not simply the complications/adverse reactions reporting forms.
4. You must provide revised chi square test analyses to compare distribution of data at time intervals that meet the conditions described in major deficiency \#2 where each patient has only one visit reported in each time interval.

If you need to obtain clarification regarding any of the above deficiencies and the measures required to correct them, a request for an informal conference with the Director of ODE is inappropriate. Instead, we suggest that you contact or meet informally with the reviewing ODE division.

Any resubmission of the PMA to correct the above deficiencies, any request for an informal conference with the Director of ODE to review this decision not to file the PMA, or any other correspondence pertaining to this PMA should be identified as a PMA amendment and should include the above PMA reference number to avoid unnecessary delays in its processing. Please submit 6 copies, or 3 copies in the case of a request for an informal conference. Please address all submissions to:

PMA Document Mail Center ($\mathrm{HFZ}-401$)
Center for Devices and Radiological Health
Food and Drug Administration
1390 Piccard Drive
Rockville, Maryland 20850
FDA must consider the PMA to have been voluntarily withdrawn if you do not respond in writing to this request for an amendment within

Page 6 - Dr. Andrew A. Marino

180 days of the date of this letter as provided under 21 CFR 814.44(g). You may, however, amend the PMA within the 180 day period to request an extension of time to respond. Any such request is subject to CDRH approval and must justify the need for the extension and provide a reasonable estimate of when the requested information will be submitted. If you do not amend the PMA within the 180 day period to (1) respond the above deficiencies or (2) request an extension of time to respond and have the request approved, FDA will close this file and not accept any amendments referencing this PMA number. Under these circumstances: any resubmissions will be given a new PMA number and will be subject to the requirements of 21 CFR 814.20 .

This letter reflects the current progress of our review of your application. It should be noted that the time allotted for the agency to perform a filing review and the condition of your PMA may not have permitted us to identify all deficiencies that the application may contain. Please be advised that continued review of your application and/or your response to this letter may result in additional deficiencies.

If you have any questions concerning the deficiencies listed above, please contact Thomas J. Callahan, Ph.D., at (301) 427-1036 or Ms. Kathleen Lundsten at (301) 427-1186.

Sincerely yours,
Waiong Leivrs
for Charles H. Kyper
Chief, Premarket Approval Section
Program Operations Staff
Office of Device Evaluation
Conter for Devices and
Radiological Health

PLASTAFIL, INC.

July 25, 1991

Director, Office of Device Evaluation
PMA Document Mail Center (HFZ-401)
Center for Devices and Radiological Health

ANDREW A. MARINO. PH. D. PRESIDENT
Food and Drug Administration
1390 Piccard Drive
Rockville, MD 20850

RE: IDE NUMBER G820122/S14
Plastafil CFS" (Carbon Fiber System)

Dear Sir,
In accordance with information provided in FDA's letter to me dated July 12, 1991, received July 17, 1991, I am requesting an informal conference with the Director of the Office of Device Evaluation (ODE) to review the decision not to file the PMA.

Approximately eight years ago I began work on this project with the goal of evaluating the use of carbon fibers for the treatment of injuries to the anterior cruciate ligament. Throughout this period, I have consistently followed the highest scientific standards and practices, and have responded to every request, direction, or suggestion made to me by the staff of ODE with whom I have dealt (ODE-S). In response, ODE-S, and particularly Nirmal Mishra have consistently lied and misled me, and the latest deficiency letter is a further example of ODE-S abusive behavior. The scientific facts, the law, and common decency require that the deficiency allegations be withdrawn, and my PMA be accepted for filing.

ODE-S is distorting the rules regarding PMA filing to make it impossible for me to obtain a decision on the scientific merits. Instead, ODE-S makes endless illegal, irrelevant, or trivial requests, thereby avoiding its responsibility to decide. I have supplied thousands of pages of documentation, hundreds of tables of data, and responded to myriad requests for more information. Despite this, I am continually met with further repetitive demands. Each new round of ODE-S employees, rather than reading information previously supplied, simply issue a new demand.

ODE-S repeatedly demands that I perform tests, conduct statistical analyses, and take other steps that are unscientific and have no rational basis. It alleges, for example, that the absence of mechanical testing constitutes a scientific deficiency. Such tests, however, are irrelevant with regard to our device. No matter what data was obtained from such tests, they could neither support nor obviate the conclusions that we reached on the basis of appropriate scientific procedures. Thus, ODE-S demands that I spend time and money performing tests that are useless.

ODE

Reasonable men may differ regarding the results and implications of various scientific studies. If a panel of my scientific peers reaches a scientific conclusion that is contrary to mine, and states the reasons as required by law, then I would regard the system
 as designed by Congress as having functioned properly. Congress, however, never intended the rules regarding filing to be used by the ODE-S as a vehicle to avoid making substantive scientific decisions. Indeed, in more than eight years of experience with the ODE-S, I have not met individuals who have written books, published scholarly articles, conducted scientific studies involving animals, performed and published the results of mechanical tests, conducted clinical studies, or written scholarly reviews. Consequently, the ODE-S may be legally incompetent to make the substantive scientific judgments inherent in the alleged deficiencies.

ODE preaches to me in a patronizing fashion when I make the smallest deviation from the original experimental plan submitted in 1983, and it simply refuses to consider that such changes were both necessary and appropriate. Thus, if I follow the 1983 protocol, I am unscientific, whereas if I do not follow it I am noncompliant.

I am weary of explaining to ODE-S that I do not have data at the specific times planned in my 1983 protocol. There are good reasons why the data does not exist; most importantly, the nonexistence of the data does not vitiate the scientific soundness of the study. But each time I explain that the material does not exist, I am met with a further request for the same data. Common decency requires ODE-S to recognize that I have in fact answered its request, and to make whatever decision on the merits ODE-S feels is fustified by my answer.

No one at ODE-S seems to understand the difference between a controlled clinical study and a collection of case reports. I am continually asked for anecdotal information and, when I respond that I performed a controlled study and did not collect anecdotal information, my response is ignored and the initial request is iterated. When ODE-S makes requests using language that has no meaning within the context of the study, it is impossible for me to respond substantively. If then, ODE demands that I respond substantively before it accepts the PMA for filing, then clearly I will never receive a decision on the merits.

Other abusive tactics have also been employed by ODE-S. I was asked, for example, to explain how the subjects in my study were randomized, and I did so in great detail. However, ODE ignored my reaponse and in the subsequent deficiency letter I was asked to "discuss how the possibility of bias in your randomization scheme was avoided." ODE-S did not reject my previous explanation because it was unclear, they simply acted as if I hadn't responded in the first instance.

A further ODE tactic has been to mischaracterize information previously proferred, and posit questions on the basis of the misunderstanding. I was

ODE
page 3
asked, for example, to "rationalize using different randomization methods and P values for each of the three centers" but I never used different randomization methods or P values at the three centers, so how, rationally, can the question be addressed?

Questions involving mechanical testing are particularly aggravating. I will not perform mechanical testing involving abrasion and creep because the data is irrelevant to my study. Now, if ODE-S concludes that it is relevant and must be performed, then there would exist an actual decision that could be examined by some independent authority. I have repeatedly told ODE that I will not perform the testa because they are irrelevant, yet, I am continually asked to perform the tests. The distinction between the two conditions involves the question whether the tests are nonsensical, as I believe, or whether they have some value. Until ODE-S makes a substantive decision, however, I can never have the issue reviewed.

ODE-S repeatedly demands animal test data, but does not appear to have any idea about its purpose or utility. I was told, for example, "if tissue ingrowth is to be considered a factor in significantly improving the strength of this ligament system, animal test data must be provided to support this claim." But I have already provided data showing that the artificial iigament performs as well as harvesting the patient's own tissue and reconstructing the joint. What then, does it matter what takes place in an animal study?

Another example of ODE-S's bad faith regarding my PMA is its handling of issues involving manufacturing. Those issues are trivial, and should be dealt with by engineers after the important scientific questions have been resolved. There is no reason for ODE-S to press questions regarding manufacturing matters now, except for a desire to erect roadblocks in my path. It should be obvious to anyone that the product can be adequately sterilized, but I simply do not have the money to hire a quality-control engineer who can supply ODE-S with the standard verbal formulas for sterilization. On the other hand, if ODE-S makes a decision on the merits and it is favorable to me, I would have no difficulty whatsoever in raising sufficient capital to hire the engineer who could supply the verbal formulas that are needed. If ODE-S's goal is to foster initiative and the development of small businesses, then it is selfdefeating to commingle manufacturing and scientific issues. On the other hand, if ODE-S would like to destroy small companies, it can do so by the simple expedient of demanding trivial (but expensive) information. Again, I have requested that the manufacturing issues be postponed but ODE-S simply ignores my request -- not refuses, but ignores -- and propounds it in the next round of paper.

I am at a loss to understand how ODE-S could have developed such hostility toward carbon fibers, and such reluctance to make a substantive decision. Throughout my eight years of dealing with ODE in this area, I have tried to hard to understand ODE-S's concerns, and to accommodate its every wish. Originally, a decision regarding the study was supposed to be made after one year following surgery. Nirmal Mishra, however, told me that he had changed

ODE

page 4
the rules and that a two-year follow-up would be needed. Later, he required a follow-up of 2-5 years, and he directed me to go overseas and determine what had happened to patients who received carbon fibers prior to the initiation of my study. I did as I was ordered,
 and supplied the information; in response, Mishra listed it as a deficiency that the foreign physicians had not followed American law in treating their patients.

No one at ODE-S seems to have an overall conception of the work we have performed, as described in the PMA. Bits and pleces of the work have been assigned to various individuals who frequently quit or are transferred, and hence are replaced by someone who knows even less than they did.

The ODE-S staff, and particularly Mishra have treated me poorly: his advice and comments during various "informal discussions" have, in retrospect, led me in exactly the wrong direction -- a direction that maximizes my grief and minimizes my opportunity to pass successfully through the review process.

I was contacted on April 26, 1991 by Rebecca Asente, of FDA, who told me that my IDE had been lost; she told me to send another copy immediately. When I asked for a written request for the information she informed me that she would not do so, and that I must respond to her oral request -- or else. This episode well exemplifies the arrogance of the ODE-S.

It's clear that there is nothing I can say nor do that will win filing of the PMA from Mishra and the other decision-makers at ODE-S, regardless of the law, the merits of my application, or basic principles of fairness and decency. ODE-S is misusing the rules governing filing to enforce the personal philosophy and opinion of individuals who are hostile to innovation and afraid to make a decision.

After eight years of dealing with Mishra, both directly and through his staff, I have formed an opinion concerning his motivation. He has decided that the use of artificial ligaments in acute cases can never be approved by ODE because it may lead to complaints in the future, thereby jeopardizing his career. In my case, he cannot fabricate reasons for rejecting the PMA on its merits because such fabrications would be inconsistent with facts when the case was presented to a judge or the general scientific community in the form of scientific publications. Consequently, Mishra has ordered the proffering of an endless series of irrelevant questions, and has made filing contingent upon the furnishing of answers to all such questions. Thus, under him, the simple procedural task of filing has grown cancerously to become an Odyssey without end.

I ask:

(1) that the PMA be filed;
(2) that individuals at ODE-S with records of demonstrated hostility toward

ODE
page 5
artificial ligaments be removed from the adjudicative process of evaluating the merits of the PMA;
(3) that all scientific questions propounded to me be clear and susceptible of being answered;

(4) that any valid scientific questions be resolved prior to a consideration of issues involving manufacturing or quality control;
(5) that questions regarding the PMA should be propounded by persons who have a basic understanding of the content of the entire application (because, otherwise, the questions frequently make no sense within the context of the PMA);
(6) that the basic rules of science, experimental design and law be applied, and applied consistently;
(7) that the basic principles of fairness be applied, and applied consistently.

I request that the informal conference be held on a face-to-face basis in an open forum with due notice to all interested industry representatives, and that an official record of the hearing be obtained to facilitate further review. If "informal conference" means that I would be closeted in a private room with 6-12 ODE staff with you, then I waive my right to a face-to-face meeting and request a decision on the basis of the paper that has been submitted.

Sincerely,

Andrew A. Marino

AAM: pab
cc: Commissioner David Kessier President Bush

PLASTAFIL, INC.

P. O. Box 268

Belcher, Louisiana 71004

July 25, 1991

David Kessler
Commissioner
Food and Drug Administration
1390 Piccard Drive
Rockville, MD 20850

Dear Commissioner Kessler,
I am the President of a small biomedical company, and I am attempting to file a PMA for an artificial ligament. In the process, I have fallen into a cesspool consisting of some of your employees who work in the Office of Device Evaluation. These employeee are misusing FDA's statutory power to regulate filing of a PMA to enforce their personal and unscientific opinions.

I am a well-published scientist, a tenured professor, and a lawyer. I have worked eight years and spent several million dollars performing the best studies regarding an implant material that have ever been performed. I have performed the first controlled clinical study regarding an orthopaedic implant. The quality and scope of the scientific data contained in my PMA is not exceeded or equalled in the world's published literature. Despite this, the ODE has refused to even consider evaluating the scientific merits of my data. Their actions are arbitrary and capricious, and I think motivated by improper considerations.

I ask you to review the facts concerning my application, and to bring about a just resolution.

AAM: pab encl.

CURRICULUM VITAE

ANDREW A. MARINO, Ph.D., J.D.
President
Plastafil, Inc.
P. O. Box 268

Belcher, Louisiana 71004
(318) 674-6177

Personal Data
Home address P.O. Box 127, Belcher, Louisiana 71004
(318) 378-4431

Education B.S., Physics, St. Joseph's College, Philadelphia, PA, 1962
M.S., Biophysics, Syracuse University, Syracuse, NY, 1965

Ph.D., Biophysics, Syracuse University, Syracuse, NY, 1968
J.D., Law, Syracuse University College of Law, 1974

Positions Held

Research Biophysicist, Veterans Administration Medical Center, Syracuse, New York, 1964-1981

Assistant Protessor, Department of Orthopaedic Surgery, SUNY Upstate Medical Center, Syracuse, New York, 1972-1981

Assistant Professor, Department of Orthopaedic Surgery, Louisiana State University Medical Center, Shreveport, Louisiana, 1981-1985

Associate Professor, Department of Orthopaedic Surgery, Louisiana State University Medical Center, Shreveport, Louisiana, 1985-1989

Associate Professor, Department of Bioengineering, Louisiana Tech University, Ruston, Louisiana, 1988-present

Professor: Department of Orthopaedic Surgery, Louisiana State University Medical Center, Shreveport, Louisiana, 1989 to present

Department of Cellular Biology and Anatomy, Louisiana State University Medical Center, Shreveport, Louisiana, 1989 to present

Chairman, LSU Medical School Institutional Review Board for Human Research, June, 1986-1990

Chairman, Committee on Promotions Guidelines, 1990-present
Chairman, Medical Communications Committee, 1990-present
President of the Faculty of the Medical School, 1991-
Member, Elected Faculty Council, LSUMC, June, 1986-present

Andrew A. Marino, Ph.D., J.D.

Member, Institutional Animal Care and Use Committee, 1990-present
Member, Standing Appeal Committee, 1990-present
Vice-President, International Society for Bioelectricity, 1981-1983
President, International Society for Bioelectricity, 1983-1991
Editorial Consultant in Biophysics and Medical Physics, Encyclopedia of Applied Physics, 1990-present
Journal of Bioelectricity 1980-1991

Bar Membership

BOOKS

1. Electromagnetism \& Lite. with R.O. Becker. State University of New York Press, Albany, 1982.
2. Electric Wilderness. A.A. Marino and J. Ray. San Francisco Press, San Francisco, 1986.
3. Foundations of Modern Bioelectricity. A.A. Marino, ed. Marcel Dekker, New York, 1988.

PAPERS

1. The electron paramagnetic resonance spectra of bone and its major components. R.O. Becker \& A.A. Marino. Nature 210: 583-588, 1966.
2. Evidence for direct physical bonding between the collagen fibers and apatite crystals in bone. A.A. Marino \& R.O. Becker. Nature 213: 697-698, 1967.
3. Dielectric determination of bound water of bone. A.A. Marino, R.O. Becker \& C.H. Bachman. Phys. Med. Biol. 12: 367-378, 1967.
4. Mechanically induced free radicals in bone. A.A. Marino \& R.O. Becker. Nature 218: 466-467, 1968.
5. Role of water in some biophysical properties of skeletal tissues. R.O. Becker \& A.A. Marino. In Biology of the Mouth. Publication No. 89, Amer. Ass. Adv. Sci., 135-143, 1968.
6. Electron paramagnetic resonance in human bone mineral: a correction. A.A. Marino \& R.O. Becker. Nature 221: 661, 1969.
7. Temperature dependence of the electron paramagnetic resonance signal in tendon collagen. A.A. Marino \& R.O. Becker. Nature 222: 164-165, 1969.
8. The effect of electric current on rat tail collagen in solution. A.A. Marino \& R.O. Becker. Calc. Tiss. Res. 4: 330-338, 1970.
9. Evidence for epitaxy in the formation of collagen and apatite. A.A. Marino \& R.O. Becker. Nature 226: 652-653, 1970.

Andrew A. Marino, Ph.D., J.D.
10. Piezoelectric effect and growth control in bone. A.A. Marino \& R O Becker. Nature 228: 473, 1970.
11. Origin of the piezoelectric effect in bone. A.A. Marino, S.C. Soderholm \& R.O. Becker. Calc. Tiss. Res. 8: 177-180, 1971.
12. Dupuytren's contracture: some associated biophysical abnormalities. E. Berg, A.A. Marino \& R O. Becker. Clin. Orthop 83: 144-148, 1972.
13. Lung damage in mice following intraperitoneal injection of butylated hydroxytoluene. A.A. Marino \& J.T. Mitchell. Proc, Soc, Exp. Biol. Med, 140: 122-125, 1972.
14. Piezoelectricity and autoinduction. A.A. Marino \& R.O. Becker. Clin. Orthop. 100: 247-249, 1974.
15. Piezoelectricity in bone as a function of age. A.A. Marino \& R.O. Becker. Calc. Tiss. Res. 14: 327331, 1974.
16. Effect of selected metals on marrow cells in culture. A.A. Marino, T.J. Berger, R.O. Becker \& J.A. Spadaro. Chem.Biol. Interactions 9: 217-223, 1974.
17. Electric field effects in selected biologic systems. A.A. Marino, T.J. Berger, J.T. Mitchell, B.A. Duhacek \& R.O. Becker. Ann. N. Y. Acad. Sci. 238: 436-444, 1974.
18. Electrical stimulation of articular cartilage regeneration. B. Baker, J.A. Spadaro, A.A. Marino \& R.O. Becker. Ann. N. Y. Acad. Sci, 238: 491-499, 1974.
19. Electrostatic field induced changes in mouse serum proteins. A.A. Marino, T.J. Berger, R.O. Becker \& F.X. Hart. Experientia 30: 1274, 1974.
20. Piezoelectricity in hydrated frozen bone and tendon. A.A. Marino \& R.O. Becker. Nature 253: 627-628, 1975.
21. Electrical correlates of acupuncture points. M. Reichmanis, A.A. Marino \& R.O. Becker. IEEE Irans. Biomed, Eng, BME-22: 533-535, 1975.
22. DC skin conductance variation at acupuncture loci. M. Reichmanis, A.A. Marino \& R.O. Becker. Am. J. Chin. Med. 4: 69-72, 1976.
23. Electrophysiological correlates of acupuncture points and meridians. R.O. Becker, M. Reichmanis, A.A. Marino \& J.A. Spadaro. Esychoenerg. Syst. 1: 105-112, 1976.
24. Photoconductivity in bone and tendon. R.G. Fuller, A.A. Marino \& R.O. Becker. Biophys. ل 16 : 845-846, 1976.
25. The effect of continuous exposure to low frequency electric fields on three generations of mice: a pilot study. A.A. Marino, R.O. Becker \& B. Ullrich. Experientia 32: 565, 1976.
26. Evaluation of electrochemical information transfer system. I. Effect of electric fields on living organisms. A.A. Marino, T.J. Berger, B.P. Austin \& R.O. Becker. ل. Electrochem. Soc. 123: 1199-1200, 1976.
27. Electrical osteogenesis: an analysis. A.A. Marino \& R.O. Becker. Clin. Orthop 123: 280-282, 1977.

Andrew A. Marino, Ph.D., J.D.
28. Clinical experiences with low intensity direct current stimulation of bone growth. R.O. Becker, J.A. Spadaro \& A.A. Marino. clin. Orthop. 124: 75-83, 1977.
29. Laplace plane analysis of transient impedance between acupuncture points Li-4 and Li-12. M. Reichmanis, A.A. Marino \& R.O. Becker. EEEE Trans, Biomed, Eng, BME-24: 402-405, 1977.
30. Energy flux along high voltage transmission lines. F.X. Hart \& A.A. Marino. IEEE Trans. Biomed. Eng. BME-24: 493-495, 1977.
31. Electromagnetic pollution. R.O. Becker \& A.A. Marino. The Sciences. January, 1978, pp. 14, 15, 23.
32. Biological effects of extremely low frequency electric and magnetic fields: a review. A.A. Marino \& R.O. Becker. Physiol.Chem. Phys 9: 131-147, 1977.
33. Evaluation of electric techniques for stimulation of hard tissue growth. R.O. Becker, J.A. Spadaro \& A.A. Marino. Bull. Prosthetics Res. BPR 10-27: 180-184, 1977.
34. Hazard at a distance: effects of exposure to the electric and magnetic fields of high voltage transmission lines. A.A. Marino \& R.O. Becker. Med. Res. Eng, 12: 6-9, 1978.
35. In vivo bioelectrochemical changes associated with exposure to ELF electric fields. A.A. Marino, T.J. Berger, B.P. Austin, R.O. Becker \& F.X. Hart. Physiol.Chem. Phys. 9: 433-441, 1977.
36. Biophysics of animal response to an electrostatic field. F.X. Hart \& A.A. Marino. J. Biol. Phys 4: 123-143, 1976.
37. Laplace plane analysis of impedance between acupuncture points $\mathrm{H}-3$ and $\mathrm{H}-4$. M. Reichmanis, A.A. Marino \& R.O. Becker. Comp. Med.East \& West 5: 189-195, 1977.
38. Evaluation of electrical techniques for stimulation of hard tissue growth. R.O. Becker, J.A. Spadaro \& A.A. Marino. Bull. Prosthetics Res. BPR 10-29: 133-136, 1978.
39. Power frequency electric fields and biological stress: a cause and effect relationship. A.A. Marino, J.M. Cullen, M. Reichmanis \& R.O. Becker. Proc. 18th Ann. Hanford Life Sciences Symposium. Dept. of Energy, Washington, D.C., 1978.
40. High voltage lines: hazard at a distance. A.A. Marino \& R.O. Becker. Environment 20(9): 6-15, 1978.
41. Effect of electrostatic fields on the chromosomes of Ehrlich ascites tumor cells exposed in vivo. J.T. Mitchell, A.A. Marino, T.J. Berger \& R.O. Becker. Physiol. Chem. Phys. 10: 79-85, 1978.
42. Space osteoporosis: an electromagnetic hypothesis. A.A. Marino, R.O. Becker, F.X. Hart \& F. Anders, Jr. Aviat. Space Environ. Med 50: 409-410, 1979.
43. Laplace plane analysis of skin impedance: a preliminary investigation. M. Reichmanis, A.A. Marino \& R.O. Becker. J. Electrochem. Soc. 125: 1765-1768, 1978.
44. Separating factual disputes from value disputes in controversies over technology. A. Mazur, A.A. Marino \& R.O. Becker. Technology in Society 1: 229-237, 1979.

Andrew A. Marino, Ph.D., J.D.
45. Power frequency electric field induces biological changes in successive generations of mice. A.A. Marino, M. Reichmanis, R.O. Becker, B. Ullrich \& J.M. Cullen. Experientia 36: 309-311, 1980.
46. Relation between suicide and the electromagnetic field of overhead power lines. M. Reichmanis, F.S. Perry, A.A. Marino \& R.O. Becker. Physiol. Chem. Phys. 11: 395-403, 1980.
47. Fracture healing in rats exposed to extremely low frequency electric fields. A.A. Marino, J.M. Cullen, M. Reichmanis \& R.O. Becker. Clin Orthop 145: 239-244, 1979.
48. Kirlian photography: potential for use in diagnosis. A.A. Marino, R.O. Becker \& B. Ullich. Psychoenerg. Syst, 3: 47-54, 1979.
49. Piezoelectricity in collagen films. A.A. Marino, J.A. Spadaro, E. Fukada, L.D. Kahn \& R.O. Becker. Calcit. Tissue Int. 31: 257-259, 1980.
50. Sensitivity to change in electrical environment: a new bioelectric effect. A.A. Marino, J.M. Cullen, M. Reichmanis, R.O. Becker \& F.X. Hart. Am. J. Physiol, 239 (Regulatory Integrative Comp. Physiol. 8): R424-427, 1980.
51. Separating disputes over facts from disputes over values. A. Mazur, A.A. Marino \& R.O. Becker. in The Dynamics of Technical Controversy A. Mazur, Communications Press, Inc., Washington D.C., 1981.
52. Environmental power-frequency magnetic fields and suicide. F.S. Perry, M. Reichmanis, A. Marino, \& R. Becker. Health_Phys. 41: 267-277, 1981.
53. Electret-induced bone formation in rats. A.A. Marino, J. Cullen, R.O. Becker \& E. Fukada. in Erontiers of Engineering in Health Care, B.A. Cohen, ed., 220-222, 1981.
54. ELF dosage in ellipsoidal models of man due to high-voltage transmission lines. F.X. Hart \& A.A. Marino. ل.Bioelectricity 1: 129-154, 1982.
55. Bioelectric considerations in the design of high-voltage power lines. M. Reichmanis \& A.A. Marino. ل. Bioelectricity 1: 329-338, 1982.
56. Silver nylon: a new antimicrobial agent. E.A. Deitch, A.A. Marino, T.E. Gillespie \& J.A. Albright. Antimicrob. Agents Chemother 23: 356-359, 1983.
57. Weak electrical fields affect plant development. A.A. Marino, F.X. Hart \& M. Reichmanis. IEEE Irans. Biomed, Eng, BME 30: 833-834, 1983.
58. Electrical stimulation in orthopaedics: past, present and future. A.A. Marino. ل Bioelectricity, 3: 235-244, 1984.
59. The use of carbon fibers in ligament repair: mechanical and biological properties. J.A. Albright, E.M. Keating \& A.A. Marino. Schumpert Med. © 3:16-24, 1984.
60. Electrochemical properties of silver-nylon fabrics. A.A. Marino, V. Malakanok, E.A. Deitch, J.A. Albright \& R.D. Specian. J_Electrochem. Soc. 132:68-72, 1985.
61. Electric silver antisepsis. A.A. Marino, E.A. Deitch \& J.A. Albright. IEEE Trans, Biomed. Eng. BME-32:336-337, 1985.

Andrew A. Marino, Ph.D., J.D.
62. Electrical augmentation of the antimicrobial activity of silver-nylon fabrics. A.A. Marino, E.A. Deitch \& J.A. Albright. J. Biol. Phys 12:93-98, 1984.
63. Electromagnetic fields and public health. A.A. Marino. in Assessments and Viempoints on the Biological and Human Health Effects of Extremely Low Frequency Electromannetic Fields. American Institute of Biological Sciences, Arlington, Va., 205-232, 1985.
64. Public health aspects of the energy flux of high-voltage powerlines. F.X. Hart \& A.A. Marino. Innov. Tech. Bio. Med (French) 5:636-640, 1984.
65. Electromagnetic energy in the environment and human disease. A.A. Marino. Clin. Ecol 3(3):154-157, 1985.
66. Chronic electromagnetic stressors in the environment: A risk factor in human cancer. A.A. Marino \& D.M. Morris. J.Environ. Sci. C3(2):189-219, 1985.
67. Penetration of electric fields into a concentric-sphere model of biological tissue. F.X. Hart \& A.A. Marino. Med \& Biol. Eng. \& Comput 24:105-108, 1985.
68. Functional repair of rabbit gastrocnemius tendons using carbon fibers. E.M. Keating, A.A. Marino, J.A. Albright \& R.D. Specian. Clin. Orthop. 209:292-297, 1986.
69. Electrical treatment of Lewis lung carcinoma in mice. A.A. Marino \& D.M. Morris. 山Surg. Res. 41:198-201, 1986.
70. Electrical stimulation of mandibular osteotomies in rabbits. A.A. Marino, B. Gross \& R.D. Specian. Oral Surg, Oral Med, Oral Path, 62:20-24, 1986.

71 Orthopaedic applications of carbon fibers. A.A. Marino, Stephen Fronczak, Clarence Boudreaux, Douglas N. Lyles, E. Michael Keating \& James A. Albright. IEEE Eng. Med. \& Biol 5:31-34, 1986.
72. Health risks from electric power facilities. A.A. Marino. in Proceedings of International Utility Symposium. Health Effects of Electric and Magnetic Fields, Ontario Hydro, Toronto, 1986.
73. La lenta evoluzione del processo reparativo di una frattura puo' essere prevenuta? G. Fontanesi, G.C. Traina, F. Giancecchi, I. Tartaglia, R. Rotini, B. Virgili, R. Cadossi, G. Ceccherelli \& A.A. Marino. Giornale Italiano di Ortopedia e Traumatologia 12:389-404, 1986.
74. Silver-nylon cloth: In vitro and in vivo evaluation of antimicrobial activity. E.A. Deitch, A.A. Marino, V. Malakanok \& J.A. Albright. ل.Trauma 27:301-304, 1987.
75. Electric man and the work of Björn Nordenström. A.A. Marino. J. Appl Nutr 39:106-108, 1987.
76. Are powerline fields hazardous to health? A.A. Marino. Public Power 45:1820, 1987.
77. Direct current and bone growth. A.A. Marino. in Foundations of Modern Bioelectricity, A.A. Marino, ed., Marcel Dekker, New York, 657-709, 1988.
78. Environmental electromagnetic fields and public health. A.A. Marino. in Eoundations of Modern Bioelectricity, A.A. Marino, ed., Marcel Dekker, New York, 965-1044, 1988.
79. Quasi-static charge interactions in bone. A.A. Marino, J. Rosson, E. Gonzalez, L. Jones, S. Rogers \& E. Fukada. ل. Electrostatics 21:347-360, 1988.

Andrew A. Marino, Ph.D., J.D.
80. Use of carbon fibers for the repair of bowed tendons: a preliminary report. S.S. van den Berg, K.P. Reed \& A. Marino. L_Equine Surg 8:339-340, 1988.
81. Piezoelectricity in cementum, dentin, and bone. A.A. Marino \& B.D. Gross. Arch. Oral Biol 34:507-509, 1989.
82. Exposure system for the production of uniform magnetic fields. G.B. Bell \& A.A. Marino. 」 Bioelectricity 8:147-158, 1989.
83. Carbon fibers for repair of abdominal-wall defects in rats. D.M. Morris, A.A. Marino, R. Haskins, R. Misra, S. Rogers, S. Fronczak \& J.A. Albright. Surgery 107:627-631, 1990.
84. Bioelectricity. A.A. Marino. Collier's Encyclopedia, 1990.
85. Meta-analysis of multi-generational studies in mice exposed to power-frequency electric fields. A.A. Marino. ل. Bioelectricily 9:213-231, 1990.
86. Use of carbon fibers in the reconstruction of knee ligaments. P. Demmer, M. Fowler \& A.A. Marino. Clin. Orthop 271:225-232, 1991.
87. The effect of electrical stimulation on bone formation around hydroxyapatite implants placed on the rabbit mandible. D. Lew \& A. Marino. 」. Oral Maxillofac. Surg. 49:735-739, 1991.
88. Electrochemical modification of tumor growth in mice. D.M. Morris, A.A. Marino \& E. Gonzalez. (In press), 1991.
89. Human sensitivity to weak magnetic fields. G. Bell, A.A. Marino, A. Chesson \& F. Struve. Lancet 338:1521-1522, 1991.
90. Electrical states in the rabbit brain can be altered by light and electromagnetic fields. G. Bell, A.A. Marino, A. Chesson \& F. Struve. (In press), 1991.

ABSTRACTS, EDITORIALS, \& REPLIES

1. The foundations of bioelectricity. A.A. Marino. \mathcal{L} Bioelectricity I:iii, 1982.
2. Silver-nylon: a new anti-bacterial agent. A.A. Marino, E.A. Deitch \& J.A. Albright. in Iransactions 2nd Annual Meeting. Bioelectrical Repair and Growth Society 2: 54, 1982.
3. The electrical environment produced at bone fracture sites by inductive coupling. F.X. Hart \& A.A. Marino. in Iransactions of the 2nd Annual Meeting of the Bioelectrical Repair and Growth Society 2: 70, 1982.
4. Reply to comments on "environmental power-frequency magnetic fields and suicides". A.A. Marino, F.S. Perry \& R.O. Becker. Heallh Phys. 44(6): 698-699, 1983.
5. Reply to comments of Robert F. Smith. A.A. Marino, Maria Reichmanis, F.S. Perry \& R.O. Becker. Health Phys. 44: 700, 1983.
6. Electrical stimulation in orthopaedics: past, present and future. A.A. Marino. in Iransactions of the First Annual Meeting of the International Society of Bioelectricity 1:3, 1983.
7. Electrical properties of silver-nylon. A.A. Marino, V. Malakanok, E.A. Deitch \& J. Albright. in Iransactions of the 3rd Annual Meeting of the Bioelectrical Repair and Growth Society 3: 36, 1983.

Andrew A. Marino, Ph.D., J.D.
8. Electrical augmentation of the anti-bacterial activity of silver-nylon. A.A. Marino, V. Malakanok, E.A. Deitch \& J. Albright. in Iransactions of the 3rd Annual Meeting of the Bioelectrical Repair and Growth Society 3: 36, 1983.
9. Where is the EPA's sense of decency? A.A. Marino. لBioelectricity 3: 1-2, 1984.
10. Silver nylon cloth; in vitro evaluation of antimicrobial activity. E.A. Deitch \& A.A. Marino. in Iransactions American Burn Association, p. 58, 1984.
11. Carbon-fiber reconstruction of Achilles tendons in rabbits. A.A. Marino, V. Malakanok, J. Albright, B. Specian \& M. Keating. in Iransactions of the 30th Annual ORS Meeting 9: 367, 1984.
12. Health aspects of environmental electromagnetism. A.A. Marino. in Iransactions of the 2nd Annual International Symposium. Man and His Environment, Wadley Institutes, Dallas, TX, 1984.
13. The Battelle studies: an analysis. A.A. Marino \& Maria Reichmanis. in Proceedings of the 6th Annual Meeting of the Bioelectromagnetics Society, p. 15, 1984.
14. Electromagnetic poliution. A.A. Marino. in Iransactions of the 3rd Annual International Symposium on Man and his Environment, Human Ecology Research Foundation of the Southwest, Dallas, Texas, 1985.
15. We need a science court. A.A. Marino. ل. Bioelectricity 4: vii, 1985.
16. Regrowth of rabbit Achilles tendons around carbon-fiber implants. R.D. Specian, A.A. Marino \& J.A. Albright. Anat Rev_211(3): A182-A183, 1985.
17. Uptake of Tc-99m MDP at fracture sites in rabbits following electrical stimulation. M.J. Wood, A.A. Marino, C. Ashley \& M.M. Hackley. Official Proceedings of the Annual Meeting of the Radiological Society of North America. Washington, DC, 1985.
18. Biological reaction to high-strength polyethylene implants. A.A. Marino, E.L. Anglin, R.P. Misra \& C. Boudreaux. Irans. 32nd Annual ORS 11: 105, 1986.
19. Long-term tissue reaction to carbon fibers. A.A. Marino \& S.J. Fronczak. (Extended Abstract), in Biomedical Engineering V: Recent Developments. Proc. 5th Southern Biomedical Engineering Conference, 530-533, 1986.
20. Medically significant effects of electromagnetic radiation. A.A. Marino. in Electromagnetic Fields and Biomembranes, Sofia University, Sofia (Bulgaria), 90-92, 1986.
21. Role of electricity as an adjunct to management of orthopaedic infection. A.A. Marino \& J.A. Albright. in Current Status of Electricity in the Clinical Sciences. Univ. of Connecticut (Orthopaedic Surgery), pp. 29-30, 1985
22. Tissue reaction to high-strength polyethylene fibers used in functional repair of rabbit gastrocnemius tendons. A.A. Marino, E.L. Anglin, R.B. Misra \& S. Fronczak. Ofthop. Trans, 10: 261, 1986.
23. Percutaneous electrical treatment of large malignant tumors in mice. D.M. Morris \& A.A. Marino. Proc. 13th Ann. Surgical Symposium Assoc. of VA Surgeons, San Antonio, Texas, 39, 1989.

Andrew A. Marino, Ph.D., J.D.
24. Negative studies and common sense. A.A. Marino. ل. Bioelectricity 8(1):v, 1989.
25. Trust me, l'm a doctor. A.A. Marino. ل_Bioelectricity 8(2):v, 1989.
26. On the relationship between surface electrical potentials and cancer. A.A. Marino, D.M. Morris \& T. Keys. ل.Bioelectricity 8:279, 1989.
27. Beauty and a beast. A.A. Marino. لـ Bioelectricity $9(1): \mathrm{v}, 1990$.
28. Partizanist discrimination in California favors electric power companies. A.A. Marino. \mathcal{L} Bioelectricity 9:v-vii, 1990.
29. Potential health risks due to powerline and substation electric and magnetic fields: Miskic Subdivision. A.A. Marino. Environmental Impact Report, Santa Cruz, CA, 1990.
30. Development of a diagnostic test for sensitivity to electromagnetic fields based on quantitative analysis of brain waves. A.A. Marino, G.B. Bell \& A. Chesson. Proc, 9th Annual Intl. Symposium on Man and His Environment in Health and Disease, p. 35, 1991.
31. Classical and modem bioelectricity. A.A. Marino. Medicine in Small Doses, CME, LSUMC-S, Vol. 12, May, 1991.

[^0]: *By "expected" in this context I understand Staff to be referring to a period of time beginning at the point of implantation during which it is anticipated that the Device will transmit a mechanical load, with the implication that if the Device does not function in such manner for such duration, the resulting situation would be viewed as a failure of the Device.

[^1]: 'Incomplete score

[^2]: *Volume 4E, page 1 of the PMA. Subsequent references in this form similarly refer to the indicated volume and page numbers of the FMA.

